Thermal Management of Adsorption-Based Biogas Upgrading Systems via Incorporation of Phase-Change Materials

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Kyle Newport, Khaled Baamran, Ali A. Rownaghi and Fateme Rezaei*, 
{"title":"Thermal Management of Adsorption-Based Biogas Upgrading Systems via Incorporation of Phase-Change Materials","authors":"Kyle Newport,&nbsp;Khaled Baamran,&nbsp;Ali A. Rownaghi and Fateme Rezaei*,&nbsp;","doi":"10.1021/acs.energyfuels.4c0308010.1021/acs.energyfuels.4c03080","DOIUrl":null,"url":null,"abstract":"<p >Thermal management of adsorption columns is necessary to maintain their effectiveness while reducing the energy requirements of the overall separation process. In this work, we aimed at investigating the suitability of blending adsorbents with phase-change materials (PCMs) to adjust the thermal profile of a biogas upgrading column. A commercially available PCM (Nextek 28D) in quantities of 10, 20, and 30 wt % was blended with zeolite 13X in two configurations, namely, traditional pellets and 3D-printed monoliths. The use of different structures allows for better analysis of thermal profiles and assessment of the effectiveness of the PCM in a packed bed adsorption column. Due to low thermal stability, PCM was not mixed directly into the pellets and monoliths; rather, it was incorporated into the adsorption column in the form of mixed-pellet and stacked-monolith structures. Our results indicated that pelletized and stacked-monolith configurations gave rise to different degrees of heat transfer across the column. The pure 13X bed exhibited a maximum temperature of 35.8 °C at a CO<sub>2</sub> capacity of 2.44 mmol/g<sub>13X</sub>. In comparison, while the implementation of 20 wt % PCM resulted in only an average temperature drop of 0.35 °C, the CO<sub>2</sub> adsorption capacity was enhanced by 11.8% per gram of 13X for mixed-pellet bed. On the other hand, the stacked-monolith bed required a minimum 20 wt % PCM to become favorable with an average temperature drop of 4.9 °C for an 8.5% increase in CO<sub>2</sub> uptake, but under identical conditions, the mixed-pellet bed was found to outperform the stacked-monolith counterpart. Additionally, simulation results confirmed that the energy balance shift caused by 185 J/g of PCM can be effective to lower the temperature of the column during the adsorption step, thereby improving the separation efficiency. This work highlights the potential of incorporating phase change materials into adsorption column to regulate temperature during adsorption step and increase equilibrium capacity by maintaining favorable thermodynamic conditions.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 23","pages":"22916–22925 22916–22925"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal management of adsorption columns is necessary to maintain their effectiveness while reducing the energy requirements of the overall separation process. In this work, we aimed at investigating the suitability of blending adsorbents with phase-change materials (PCMs) to adjust the thermal profile of a biogas upgrading column. A commercially available PCM (Nextek 28D) in quantities of 10, 20, and 30 wt % was blended with zeolite 13X in two configurations, namely, traditional pellets and 3D-printed monoliths. The use of different structures allows for better analysis of thermal profiles and assessment of the effectiveness of the PCM in a packed bed adsorption column. Due to low thermal stability, PCM was not mixed directly into the pellets and monoliths; rather, it was incorporated into the adsorption column in the form of mixed-pellet and stacked-monolith structures. Our results indicated that pelletized and stacked-monolith configurations gave rise to different degrees of heat transfer across the column. The pure 13X bed exhibited a maximum temperature of 35.8 °C at a CO2 capacity of 2.44 mmol/g13X. In comparison, while the implementation of 20 wt % PCM resulted in only an average temperature drop of 0.35 °C, the CO2 adsorption capacity was enhanced by 11.8% per gram of 13X for mixed-pellet bed. On the other hand, the stacked-monolith bed required a minimum 20 wt % PCM to become favorable with an average temperature drop of 4.9 °C for an 8.5% increase in CO2 uptake, but under identical conditions, the mixed-pellet bed was found to outperform the stacked-monolith counterpart. Additionally, simulation results confirmed that the energy balance shift caused by 185 J/g of PCM can be effective to lower the temperature of the column during the adsorption step, thereby improving the separation efficiency. This work highlights the potential of incorporating phase change materials into adsorption column to regulate temperature during adsorption step and increase equilibrium capacity by maintaining favorable thermodynamic conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信