Jana H. Johansson*, Damien Bolinius, Johan Strandberg, Jing-Jing Yang, Jonathan P. Benskin and Raed Awad*,
{"title":"Emission of Perfluoroalkyl Acids and Unidentified Organofluorine from Swedish Municipal Waste Incineration Plants","authors":"Jana H. Johansson*, Damien Bolinius, Johan Strandberg, Jing-Jing Yang, Jonathan P. Benskin and Raed Awad*, ","doi":"10.1021/acs.estlett.4c0081910.1021/acs.estlett.4c00819","DOIUrl":null,"url":null,"abstract":"<p >Incineration is commonly used to dispose of waste contaminated with per- and polyfluoroalkyl substances (PFAS), despite few experimental data supporting the efficacy of this technique. To investigate the prevalence of PFAS in residuals from Swedish municipal waste incineration (MWI) plants, samples of fly ash, bottom ash, and flue gas condensate were collected from 27 of Sweden’s 38 plants and analyzed for 13 perfluoroalkyl acids (PFAAs). ∑<sub>13</sub>PFAA concentrations ranged from 0.28 to 180 ng/L, 0.22–1.6 μg/kg, and 0.18–38 μg/kg, in condensate, bottom ash, and fly ash, respectively (detection frequencies of 79, 21, and 30%, respectively). Total fluorine (TF) measurements in a subset of samples revealed concentrations of <0.20–11 mg F/L in condensate (n = 8) and 120–5400 μg F/g in ashes (n = 8), the former of which was primarily attributed to inorganic fluorine. Extractable organofluorine (EOF) exceeded ∑<sub>13</sub>PFAA concentrations by up to 3 orders of magnitude (0.70–16 μg F/g in fly ash [n = 3] and <0.80–9.0 μg F/L for condensate [n = 2]), suggesting that the majority of fluorine occurring in MWI residuals remains unidentified. Collectively, these data demonstrate that despite temperatures exceeding 1000 °C, PFAAs and other fluorinated substances may form and/or persist during incineration and risk being released to the environment via MWI residues.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 12","pages":"1377–1383 1377–1383"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00819","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00819","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Incineration is commonly used to dispose of waste contaminated with per- and polyfluoroalkyl substances (PFAS), despite few experimental data supporting the efficacy of this technique. To investigate the prevalence of PFAS in residuals from Swedish municipal waste incineration (MWI) plants, samples of fly ash, bottom ash, and flue gas condensate were collected from 27 of Sweden’s 38 plants and analyzed for 13 perfluoroalkyl acids (PFAAs). ∑13PFAA concentrations ranged from 0.28 to 180 ng/L, 0.22–1.6 μg/kg, and 0.18–38 μg/kg, in condensate, bottom ash, and fly ash, respectively (detection frequencies of 79, 21, and 30%, respectively). Total fluorine (TF) measurements in a subset of samples revealed concentrations of <0.20–11 mg F/L in condensate (n = 8) and 120–5400 μg F/g in ashes (n = 8), the former of which was primarily attributed to inorganic fluorine. Extractable organofluorine (EOF) exceeded ∑13PFAA concentrations by up to 3 orders of magnitude (0.70–16 μg F/g in fly ash [n = 3] and <0.80–9.0 μg F/L for condensate [n = 2]), suggesting that the majority of fluorine occurring in MWI residuals remains unidentified. Collectively, these data demonstrate that despite temperatures exceeding 1000 °C, PFAAs and other fluorinated substances may form and/or persist during incineration and risk being released to the environment via MWI residues.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.