Porous Carbon Nanorods Encapsulating Bismuth Nanoparticles Promote p-Si Nanowire Array for Photoelectrocatalytic CO2 Reduction to Formate

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yuanyuan Chen, Jihu Kang, Mingyue Zou, Keke Wang, Min Liu and Wenzhang Li*, 
{"title":"Porous Carbon Nanorods Encapsulating Bismuth Nanoparticles Promote p-Si Nanowire Array for Photoelectrocatalytic CO2 Reduction to Formate","authors":"Yuanyuan Chen,&nbsp;Jihu Kang,&nbsp;Mingyue Zou,&nbsp;Keke Wang,&nbsp;Min Liu and Wenzhang Li*,&nbsp;","doi":"10.1021/acs.iecr.4c0336110.1021/acs.iecr.4c03361","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrocatalytic reduction of carbon dioxide to high value-added chemicals is one of the effective means to reduce greenhouse gas emissions and alleviate the energy crisis. In this study, porous carbon nanorods encapsulating bismuth (Bi) nanoparticles were synthesized using a metal–organic framework (MOF)-assisted spatial confinement and high-temperature carbonization strategy and then modified on silicon nanowires to construct a Si–Bi@Cx composite photocathode. The presence of the plasmonic metal Bi enhances the light absorption and improves the selectivity of carbon dioxide reduction products as reactive substances. At −0.9 V vs RHE, the Si–Bi@C800 photocathode achieves a faradaic efficiency for formic acid (FE<sub>HCOOH</sub>) of up to 91.23%, with a production rate of 88.5 μmol·h<sup>–1</sup>·cm<sup>–2</sup>. Further experimental analysis and in situ infrared spectroscopy results showed that the porous carbon nanorods with strong hydrophobicity not only reduce the contact between the electrode and water and inhibit the occurrence of the hydrogen evolution reaction but also accelerate the mass transfer of CO<sub>2</sub> molecules and increase the local CO<sub>2</sub> concentration. Simultaneously, Bi nanoparticles promote the formation of the *OCHO intermediate and realize the efficient conversion of CO<sub>2</sub> to formic acid. This study lays a foundation for constructing active sites on silicon-based semiconductors.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 50","pages":"21831–21840 21831–21840"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03361","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrocatalytic reduction of carbon dioxide to high value-added chemicals is one of the effective means to reduce greenhouse gas emissions and alleviate the energy crisis. In this study, porous carbon nanorods encapsulating bismuth (Bi) nanoparticles were synthesized using a metal–organic framework (MOF)-assisted spatial confinement and high-temperature carbonization strategy and then modified on silicon nanowires to construct a Si–Bi@Cx composite photocathode. The presence of the plasmonic metal Bi enhances the light absorption and improves the selectivity of carbon dioxide reduction products as reactive substances. At −0.9 V vs RHE, the Si–Bi@C800 photocathode achieves a faradaic efficiency for formic acid (FEHCOOH) of up to 91.23%, with a production rate of 88.5 μmol·h–1·cm–2. Further experimental analysis and in situ infrared spectroscopy results showed that the porous carbon nanorods with strong hydrophobicity not only reduce the contact between the electrode and water and inhibit the occurrence of the hydrogen evolution reaction but also accelerate the mass transfer of CO2 molecules and increase the local CO2 concentration. Simultaneously, Bi nanoparticles promote the formation of the *OCHO intermediate and realize the efficient conversion of CO2 to formic acid. This study lays a foundation for constructing active sites on silicon-based semiconductors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信