Modeling Solubilities for Amino Acids in Water as Functions of Temperature and pH

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Tianxin Zhang, Ashwin Dravid, Jayanth Reddy, Lateef Aliyu, Jaeyoung Park, Zibo Wang, Kai-Wen Huang, Jinke Wu, Shuman Liu, Alan Stone, Michael Betenbaugh and Marc Donohue*, 
{"title":"Modeling Solubilities for Amino Acids in Water as Functions of Temperature and pH","authors":"Tianxin Zhang,&nbsp;Ashwin Dravid,&nbsp;Jayanth Reddy,&nbsp;Lateef Aliyu,&nbsp;Jaeyoung Park,&nbsp;Zibo Wang,&nbsp;Kai-Wen Huang,&nbsp;Jinke Wu,&nbsp;Shuman Liu,&nbsp;Alan Stone,&nbsp;Michael Betenbaugh and Marc Donohue*,&nbsp;","doi":"10.1021/acs.iecr.3c0036510.1021/acs.iecr.3c00365","DOIUrl":null,"url":null,"abstract":"<p >Experimental results from the literature as well as from new experimental results presented here are used to determine parameters to correlate amino acid solubilities and activities in water. In particular, we have used a modified Larsen’s UNIQUAC Functional-group Activity Coefficients (UNIFAC) group-contribution model to illustrate the solubility behavior of 10 amino acids in water including <span>l</span>-Histidine and <span>l</span>-Arginine that, to our knowledge, have not been published previously. New UNIFAC groups have been introduced to obtain the activity coefficients for the prediction of activities and solubilities as a function of temperature and pH. Prior models have not accounted for ionic interactions that affect pH dependent behavior and predictions. Hence, we examine whether a combination of UNIFAC and a new modified Debye–Huckel equation by Rapp et al.<sup>1</sup> is able to predict the activity coefficients of ionic species in solution at the high ionic strengths seen at high and low pH. We measured solubilities and fitted binary amino acid activity coefficients to estimate the new UNIFAC interaction parameters. The newly obtained UNIFAC parameters were used for the prediction of amino acid solubilities when they were predominantly charge-neutral. Then ionic interactions and pH-dependent chemical equilibria were added to calculate amino acid solubilities in aqueous solutions at different values of pH and temperature. The chemical equilibria required were calculated in a manner similar to Visual-MINTEQ<sup>2</sup> that will be described in a separate publication. The calculated solubilities were found to be in good agreement with our experimental measurements and with literature data.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 50","pages":"22076–22086 22076–22086"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.3c00365","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental results from the literature as well as from new experimental results presented here are used to determine parameters to correlate amino acid solubilities and activities in water. In particular, we have used a modified Larsen’s UNIQUAC Functional-group Activity Coefficients (UNIFAC) group-contribution model to illustrate the solubility behavior of 10 amino acids in water including l-Histidine and l-Arginine that, to our knowledge, have not been published previously. New UNIFAC groups have been introduced to obtain the activity coefficients for the prediction of activities and solubilities as a function of temperature and pH. Prior models have not accounted for ionic interactions that affect pH dependent behavior and predictions. Hence, we examine whether a combination of UNIFAC and a new modified Debye–Huckel equation by Rapp et al.1 is able to predict the activity coefficients of ionic species in solution at the high ionic strengths seen at high and low pH. We measured solubilities and fitted binary amino acid activity coefficients to estimate the new UNIFAC interaction parameters. The newly obtained UNIFAC parameters were used for the prediction of amino acid solubilities when they were predominantly charge-neutral. Then ionic interactions and pH-dependent chemical equilibria were added to calculate amino acid solubilities in aqueous solutions at different values of pH and temperature. The chemical equilibria required were calculated in a manner similar to Visual-MINTEQ2 that will be described in a separate publication. The calculated solubilities were found to be in good agreement with our experimental measurements and with literature data.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信