TiO2–Mo2C Heterostructure for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junmei Wang*, Qingkun Tian, Li Chen, Maoyou Yang, Xia Zhang and Xiaodan Wang, 
{"title":"TiO2–Mo2C Heterostructure for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia","authors":"Junmei Wang*,&nbsp;Qingkun Tian,&nbsp;Li Chen,&nbsp;Maoyou Yang,&nbsp;Xia Zhang and Xiaodan Wang,&nbsp;","doi":"10.1021/acsomega.4c0919310.1021/acsomega.4c09193","DOIUrl":null,"url":null,"abstract":"<p >The development of catalysts with high activity and selectivity for the electrochemical nitrogen reduction reaction (NRR) remains crucial. Molybdenum carbide (Mo<sub>2</sub>C) shows promise as an electrocatalyst for NRR but faces challenges due to the difficulty of N<sub>2</sub> adsorption and activation as well as the competitive hydrogen evolution reaction. In this study, we propose a strategy of combining TiO<sub>2</sub> with Mo<sub>2</sub>C to form heterostructure catalysts. Our first-principles theoretical calculations indicate that the TiO<sub>2</sub>–Mo<sub>2</sub>C heterostructure exhibits enhanced N<sub>2</sub> adsorption and activation, attributed to the increased interaction between the π<sub>4d</sub><sup>*</sup> orbital of Mo and the π<sub>2p</sub><sup>*</sup> orbital of N<sub>2</sub>, facilitated by the directional modulation of Mo’s d-orbitals by TiO<sub>2</sub>. A more positive integrated crystal orbital Hamilton population and an elongated N≡N bond length prove this. Additionally, the higher Gibbs free energy for N<sub>2</sub> compared to that for H demonstrates a preference for N<sub>2</sub> adsorption. We further elucidate the catalytic mechanism for converting N<sub>2</sub> to NH<sub>3</sub> on the TiO<sub>2</sub>–Mo<sub>2</sub>C surface, identifying the associative distal pathway as the dominant route over the associative alternating pathway. This work highlights unique advantages of the TiO<sub>2</sub>–Mo<sub>2</sub>C heterostructure for the NRR and provides theoretical guidance for designing efficient NRR electrocatalysts.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49945–49952 49945–49952"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09193","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of catalysts with high activity and selectivity for the electrochemical nitrogen reduction reaction (NRR) remains crucial. Molybdenum carbide (Mo2C) shows promise as an electrocatalyst for NRR but faces challenges due to the difficulty of N2 adsorption and activation as well as the competitive hydrogen evolution reaction. In this study, we propose a strategy of combining TiO2 with Mo2C to form heterostructure catalysts. Our first-principles theoretical calculations indicate that the TiO2–Mo2C heterostructure exhibits enhanced N2 adsorption and activation, attributed to the increased interaction between the π4d* orbital of Mo and the π2p* orbital of N2, facilitated by the directional modulation of Mo’s d-orbitals by TiO2. A more positive integrated crystal orbital Hamilton population and an elongated N≡N bond length prove this. Additionally, the higher Gibbs free energy for N2 compared to that for H demonstrates a preference for N2 adsorption. We further elucidate the catalytic mechanism for converting N2 to NH3 on the TiO2–Mo2C surface, identifying the associative distal pathway as the dominant route over the associative alternating pathway. This work highlights unique advantages of the TiO2–Mo2C heterostructure for the NRR and provides theoretical guidance for designing efficient NRR electrocatalysts.

强化电催化氮还原制氨的TiO2-Mo2C异质结构
开发具有高活性和选择性的电化学氮还原反应催化剂仍然是至关重要的。碳化钼(Mo2C)作为NRR电催化剂表现出良好的前景,但由于N2吸附和活化困难以及析氢反应的竞争性,面临着挑战。在本研究中,我们提出了一种将TiO2与Mo2C结合形成异质结构催化剂的策略。我们的第一性原理理论计算表明TiO2 - mo2c异质结构表现出增强的N2吸附和活化,这是由于TiO2对Mo的d轨道进行定向调制,使Mo的π4d*轨道和N2的π2p*轨道之间的相互作用增强。一个更正的集成晶体轨道Hamilton居群和一个加长的N≡N键长证明了这一点。此外,N2比H具有更高的吉布斯自由能,这表明N2更易于吸附。我们进一步阐明了在TiO2-Mo2C表面将N2转化为NH3的催化机制,确定了缔合远端途径是缔合交替途径的主要途径。本研究突出了TiO2-Mo2C异质结构对NRR的独特优势,为设计高效的NRR电催化剂提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信