Rapid and Direct Conversion of the Ti3AlC2 MAX Phase to Ti3C2Tx MXene Nanosheets by a Supercritical Water-Assisted Etching Process

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kunal Roy, Navya Rani M*, Manikanta Palya Narayanaswamy, Tathagata Sardar, Vidyashankar S and Dinesh Rangappa*, 
{"title":"Rapid and Direct Conversion of the Ti3AlC2 MAX Phase to Ti3C2Tx MXene Nanosheets by a Supercritical Water-Assisted Etching Process","authors":"Kunal Roy,&nbsp;Navya Rani M*,&nbsp;Manikanta Palya Narayanaswamy,&nbsp;Tathagata Sardar,&nbsp;Vidyashankar S and Dinesh Rangappa*,&nbsp;","doi":"10.1021/acsanm.4c0561210.1021/acsanm.4c05612","DOIUrl":null,"url":null,"abstract":"<p >Currently, two-dimensional MXenes have become a quest for the synthesis bottlenecks by the conventional process due to slow etching reaction of the bulk MAX phase, use of hazardous chemicals, and laborious methods. Herein, we demonstrate a one-step rapid conversion of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase to Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets on the order of few minutes using supercritical water. The process is demonstrated to remove the metallic aluminum interlayers from the MAX phase material with the help of a lowest-concentrated hydrofluoric acid (HF) etchant up to 4 vol % instead of 40–50 vol %. Furthermore, the conversion achieves as high as ≈61% yield within a short reaction time of 30 min at a temperature of 400 °C. Thereafter, the synthesized MXene is used to measure the electrochemical performance for both three-electrode and two-electrode supercapacitors as well as Li-ion battery applications. The high electrochemical specific capacitance of 271.3 F·g<sup>–1</sup> at 0.75 A·g<sup>–1</sup> in a two-electrode system is found for the supercapacitor. Additionally, the specific capacity of 120 mAh·g<sup>–1</sup> at 1 C is obtained for Li-ion battery performance with 87% of Coulombic efficiency. The properties are then compared with those of conventionally prepared MXene, showing to be essentially comparable. This demonstrates that MXenes do not undergo adverse changes in structure or properties while synthesized rapidly and scaling. Thus, it can make them viable for further scale-up and commercialization in forthcoming days.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27628–27639 27628–27639"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05612","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, two-dimensional MXenes have become a quest for the synthesis bottlenecks by the conventional process due to slow etching reaction of the bulk MAX phase, use of hazardous chemicals, and laborious methods. Herein, we demonstrate a one-step rapid conversion of the Ti3AlC2 MAX phase to Ti3C2Tx MXene nanosheets on the order of few minutes using supercritical water. The process is demonstrated to remove the metallic aluminum interlayers from the MAX phase material with the help of a lowest-concentrated hydrofluoric acid (HF) etchant up to 4 vol % instead of 40–50 vol %. Furthermore, the conversion achieves as high as ≈61% yield within a short reaction time of 30 min at a temperature of 400 °C. Thereafter, the synthesized MXene is used to measure the electrochemical performance for both three-electrode and two-electrode supercapacitors as well as Li-ion battery applications. The high electrochemical specific capacitance of 271.3 F·g–1 at 0.75 A·g–1 in a two-electrode system is found for the supercapacitor. Additionally, the specific capacity of 120 mAh·g–1 at 1 C is obtained for Li-ion battery performance with 87% of Coulombic efficiency. The properties are then compared with those of conventionally prepared MXene, showing to be essentially comparable. This demonstrates that MXenes do not undergo adverse changes in structure or properties while synthesized rapidly and scaling. Thus, it can make them viable for further scale-up and commercialization in forthcoming days.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信