Single-Sided Delocalized Polarization of the C60 Cage and Reduced Infrared Intensities and Dipole Moment of H2O@C60

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hajime Torii*, Shumpei Sadai, Yoshifumi Hashikawa*, Yasujiro Murata and Yuka Ikemoto*, 
{"title":"Single-Sided Delocalized Polarization of the C60 Cage and Reduced Infrared Intensities and Dipole Moment of H2O@C60","authors":"Hajime Torii*,&nbsp;Shumpei Sadai,&nbsp;Yoshifumi Hashikawa*,&nbsp;Yasujiro Murata and Yuka Ikemoto*,&nbsp;","doi":"10.1021/acs.jpca.4c0707210.1021/acs.jpca.4c07072","DOIUrl":null,"url":null,"abstract":"<p >The C<sub>60</sub> fullerene cage can encapsulate a small molecule like water and provides room to leave the encapsulated component rather isolated, but the true nature of the intracomplex interactions should be further elucidated for better understanding and utility of this series of complexes. Here, an analysis toward this goal is conducted for H<sub>2</sub>O@C<sub>60</sub> by infrared spectral measurements and theoretical calculations. It is shown that the response of the π electrons of the C<sub>60</sub> cage upon encapsulating a water molecule is single-sided and delocalized in that the electron density is partially transferred from the −<i>z</i> side to the +<i>z</i> side of the cage (when the <i>z</i> axis is taken along the water dipole) but almost only inside the cage, explaining the significant reduction of the dipole moment and the infrared intensities. Those infrared intensities have a large temperature dependence in a way that the bands gain intensities upon lowering the temperature down to 10 K, possibly due to coupling with lattice phonons.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 50","pages":"10867–10874 10867–10874"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07072","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The C60 fullerene cage can encapsulate a small molecule like water and provides room to leave the encapsulated component rather isolated, but the true nature of the intracomplex interactions should be further elucidated for better understanding and utility of this series of complexes. Here, an analysis toward this goal is conducted for H2O@C60 by infrared spectral measurements and theoretical calculations. It is shown that the response of the π electrons of the C60 cage upon encapsulating a water molecule is single-sided and delocalized in that the electron density is partially transferred from the −z side to the +z side of the cage (when the z axis is taken along the water dipole) but almost only inside the cage, explaining the significant reduction of the dipole moment and the infrared intensities. Those infrared intensities have a large temperature dependence in a way that the bands gain intensities upon lowering the temperature down to 10 K, possibly due to coupling with lattice phonons.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信