Florian Wittlinger, Surbhi P. Chitnis, Calvin D. Pham, Tahereh Damghani, Kishan B. Patel, Mareike Möllers, Ilse K. Schaeffner, Omobolanle A. Abidakun, Matthew Q. Deng, Blessing C. Ogboo, Alexander Rasch, Tyler S. Beyett, Brian Buckley, Frederic Feru, Tatiana Shaurova, Cornelius Knappe, Michael J. Eck, Pamela A. Hershberger, David A. Scott, Asher L. Brandt, Stefan A. Laufer* and David E. Heppner*,
{"title":"Tilting the Scales toward EGFR Mutant Selectivity: Expanding the Scope of Bivalent “Type V” Kinase Inhibitors","authors":"Florian Wittlinger, Surbhi P. Chitnis, Calvin D. Pham, Tahereh Damghani, Kishan B. Patel, Mareike Möllers, Ilse K. Schaeffner, Omobolanle A. Abidakun, Matthew Q. Deng, Blessing C. Ogboo, Alexander Rasch, Tyler S. Beyett, Brian Buckley, Frederic Feru, Tatiana Shaurova, Cornelius Knappe, Michael J. Eck, Pamela A. Hershberger, David A. Scott, Asher L. Brandt, Stefan A. Laufer* and David E. Heppner*, ","doi":"10.1021/acs.jmedchem.4c0231110.1021/acs.jmedchem.4c02311","DOIUrl":null,"url":null,"abstract":"<p >Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure–activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I<sup>1</sup>/<sub>2</sub> inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as “Type V” bivalent inhibitors.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 23","pages":"21438–21469 21438–21469"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c02311","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure–activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I1/2 inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as “Type V” bivalent inhibitors.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.