Novel Benzimidazole Derivatives as Potent Inhibitors of Microsomal Prostaglandin E2 Synthase 1 for the Potential Treatment of Inflammation, Pain, and Fever

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Azize Gizem Ergül, Paul M. Jordan, Philipp Dahlke, Nur Banu Bal, Abdurrahman Olğaç, Orhan Uludağ, Oliver Werz*, Burcu Çalışkan* and Erden Banoglu*, 
{"title":"Novel Benzimidazole Derivatives as Potent Inhibitors of Microsomal Prostaglandin E2 Synthase 1 for the Potential Treatment of Inflammation, Pain, and Fever","authors":"Azize Gizem Ergül,&nbsp;Paul M. Jordan,&nbsp;Philipp Dahlke,&nbsp;Nur Banu Bal,&nbsp;Abdurrahman Olğaç,&nbsp;Orhan Uludağ,&nbsp;Oliver Werz*,&nbsp;Burcu Çalışkan* and Erden Banoglu*,&nbsp;","doi":"10.1021/acs.jmedchem.4c0188310.1021/acs.jmedchem.4c01883","DOIUrl":null,"url":null,"abstract":"<p >Microsomal prostaglandin E<sub>2</sub> synthase 1 (mPGES-1) is a promising target for treating inflammatory diseases and pain. This study introduces a novel series of benzimidazoles, with the most potent analogs exhibiting IC<sub>50</sub> values of 0.27–7.0 nM in a cell-free assay for prostaglandin (PG)E<sub>2</sub> production. Compound <b>44</b> (AGU654) demonstrated remarkable selectivity for mPGES-1 (IC<sub>50</sub> = 2.9 nM) over COX-1, COX-2, 5-LOX, and FLAP, along with excellent bioavailability. Metabololipidomics analysis with activated human monocyte-derived macrophages and human whole blood revealed that AGU654 selectively suppresses PGE<sub>2</sub> production triggered by bacterial exotoxins while sparing other prostaglandins. Furthermore, <i>in vivo</i> studies showed that AGU654 significantly alleviated fever, inflammation, and inflammatory pain in preclinical guinea pig models, suggesting that it could be an effective strategy for managing inflammatory diseases. In conclusion, these benzimidazole derivatives warrant further exploration into new and alternative analogs, potentially uncovering novel compounds with a favorable pharmacological profile possessing significant anti-inflammatory and analgesic properties.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 23","pages":"21143–21162 21143–21162"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01883","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microsomal prostaglandin E2 synthase 1 (mPGES-1) is a promising target for treating inflammatory diseases and pain. This study introduces a novel series of benzimidazoles, with the most potent analogs exhibiting IC50 values of 0.27–7.0 nM in a cell-free assay for prostaglandin (PG)E2 production. Compound 44 (AGU654) demonstrated remarkable selectivity for mPGES-1 (IC50 = 2.9 nM) over COX-1, COX-2, 5-LOX, and FLAP, along with excellent bioavailability. Metabololipidomics analysis with activated human monocyte-derived macrophages and human whole blood revealed that AGU654 selectively suppresses PGE2 production triggered by bacterial exotoxins while sparing other prostaglandins. Furthermore, in vivo studies showed that AGU654 significantly alleviated fever, inflammation, and inflammatory pain in preclinical guinea pig models, suggesting that it could be an effective strategy for managing inflammatory diseases. In conclusion, these benzimidazole derivatives warrant further exploration into new and alternative analogs, potentially uncovering novel compounds with a favorable pharmacological profile possessing significant anti-inflammatory and analgesic properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信