Autonomous Exploitation of Reaction Pathways for Electrochemical C–N Coupling on Single-Atom Catalysts

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Junjie Pan, Haowen Ding, Xinzhe Yang, Xianhui Liang, Shanglin Wu, Mingzheng Zhang, Shunning Li, Shisheng Zheng, Feng Pan
{"title":"Autonomous Exploitation of Reaction Pathways for Electrochemical C–N Coupling on Single-Atom Catalysts","authors":"Junjie Pan, Haowen Ding, Xinzhe Yang, Xianhui Liang, Shanglin Wu, Mingzheng Zhang, Shunning Li, Shisheng Zheng, Feng Pan","doi":"10.1021/acscatal.4c05751","DOIUrl":null,"url":null,"abstract":"Electrochemical C–N coupling between CO<sub>2</sub> and N-containing small molecules is a promising strategy to close both the carbon and nitrogen loops to support the establishment of a net-zero carbon economy. However, the intricate reaction network and the contentious C–N coupling mechanism hinder the development of efficient electrocatalysts for industrial applications. Herein, we develop a graph-based approach to enable autonomous analysis of the C–N coupling mechanism for coreduction of CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> on single-atom catalysts (SACs). 1400 potential intermediates and 2490 C–N coupling modes are investigated based on the Cu-N<sub>4</sub>-C prototypical catalyst. We demonstrate that N-containing species with a higher reduction degree are more likely to undergo C–N coupling and the initial coupling of the C–N bond tends to occur on CO<sub>2</sub>. It is revealed that the hydrogenation energies of *NH<sub>2</sub> and CO<sub>2</sub>, as well as their coupling energies, can serve as key indicators for catalyst recommendation. Using this approach, SACs with Mo, W, or Sb metal centers are identified as promising electrocatalysts for C–N coupling. This work presents a paradigm for automatically exploring the mechanisms of complex electrocatalytic reactions and offers a strategy for predicting highly active and selective SACs.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"96 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05751","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical C–N coupling between CO2 and N-containing small molecules is a promising strategy to close both the carbon and nitrogen loops to support the establishment of a net-zero carbon economy. However, the intricate reaction network and the contentious C–N coupling mechanism hinder the development of efficient electrocatalysts for industrial applications. Herein, we develop a graph-based approach to enable autonomous analysis of the C–N coupling mechanism for coreduction of CO2 and NO3 on single-atom catalysts (SACs). 1400 potential intermediates and 2490 C–N coupling modes are investigated based on the Cu-N4-C prototypical catalyst. We demonstrate that N-containing species with a higher reduction degree are more likely to undergo C–N coupling and the initial coupling of the C–N bond tends to occur on CO2. It is revealed that the hydrogenation energies of *NH2 and CO2, as well as their coupling energies, can serve as key indicators for catalyst recommendation. Using this approach, SACs with Mo, W, or Sb metal centers are identified as promising electrocatalysts for C–N coupling. This work presents a paradigm for automatically exploring the mechanisms of complex electrocatalytic reactions and offers a strategy for predicting highly active and selective SACs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信