Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert
{"title":"Kinetics of Volatile and Nonvolatile Halide Perovskite Devices: The Conductance-Activated Quasi-Linear Memristor (CALM) Model","authors":"Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert","doi":"10.1021/acs.jpclett.4c03132","DOIUrl":null,"url":null,"abstract":"Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current–voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO<sub>2</sub>/Ag, and SrRuO<sub>3</sub>/Cr-SrZrO<sub>3</sub>/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"53 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03132","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current–voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO2/Ag, and SrRuO3/Cr-SrZrO3/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.