Kinetics of Volatile and Nonvolatile Halide Perovskite Devices: The Conductance-Activated Quasi-Linear Memristor (CALM) Model

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert
{"title":"Kinetics of Volatile and Nonvolatile Halide Perovskite Devices: The Conductance-Activated Quasi-Linear Memristor (CALM) Model","authors":"Agustín Bou, Cedric Gonzales, Pablo P. Boix, Yana Vaynzof, Antonio Guerrero, Juan Bisquert","doi":"10.1021/acs.jpclett.4c03132","DOIUrl":null,"url":null,"abstract":"Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current–voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO<sub>2</sub>/Ag, and SrRuO<sub>3</sub>/Cr-SrZrO<sub>3</sub>/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"53 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03132","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Memristors stand out as promising components in the landscape of memory and computing. Memristors are generally defined by a conductance mechanism containing a state variable that imparts a memory effect. The current–voltage cycling causes transitions of conductance, which are determined by different physical mechanisms, such as the formation of conducting filaments in an insulating surrounding. Here, we provide a unified description of the set and reset processes using a conductance-activated quasi-linear memristor (CALM) model with a unique voltage-dependent relaxation time of the memory variable. We focus on halide perovskite memristors and their intersection with neuroscience-inspired computing. We show that the modeling approach adeptly replicates the experimental traits of both volatile and nonvolatile memristors. Its versatility extends across various device materials and configurations, as W/SiGe/a-Si/Ag, Si/SiO2/Ag, and SrRuO3/Cr-SrZrO3/Au memristors, capturing nuanced behaviors such as scan rate and upper vertex dependence. The model also describes the response to sequences of voltage pulses that cause synaptic potentiation effects. This model is a potent tool for comprehending and probing the dynamical response of memristors by indicating the relaxation properties that control observable responses.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信