Bacterial Cellulose/Graphene Oxide/Hydroxyapatite Biocomposite: A Scaffold from Sustainable Sources for Bone Tissue Engineering

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Adam Aberra Challa, Nabanita Saha, Tanya Zhivkova, Radostina Alexandrova, Petr Saha
{"title":"Bacterial Cellulose/Graphene Oxide/Hydroxyapatite Biocomposite: A Scaffold from Sustainable Sources for Bone Tissue Engineering","authors":"Adam Aberra Challa, Nabanita Saha, Tanya Zhivkova, Radostina Alexandrova, Petr Saha","doi":"10.1021/acsami.4c17306","DOIUrl":null,"url":null,"abstract":"Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended. Hence, attempts to obtain efficient composites are growing. However, in most cases, the conventional production methods of scaffolds are energy-intensive and leave an impact on the environment. This work aims to develop a biocomposite scaffold integrating bacterial cellulose (BC), hydroxyapatite (HAp), and graphene oxide (GO), designated as “BC/HAp/GO”. All components are sourced primarily from agricultural and food waste as alternative means. BC, known for its biocompatibility, fine fiber network, and high porosity, serves as an ideal scaffold material. HAp, a naturally occurring bone component, contributes osteoconductive properties, while GO provides mechanical strength and biofunctionalization capabilities. The biomaterials were analyzed and characterized using a scanning electron microscope, a X-ray diffractometer, and a Fourier transform infrared spectrometer. The produced biocomposite scaffolds were tested for thermal stability, mechanical strength, and biocompatibility. The results showed a nanofibrous, porous network of BC, highly crystalline HAp particles, and well-oxygenated GO flakes with slight structural deformities. The synthesized biocomposite demonstrated promising characteristics, such as increased tensile strength due to added GO particles and higher bioactivity through the introduction of HAp. These inexpensively synthesized materials, marked by suitable surface morphology and cell adhesion properties, open potential applications in bone repair and regeneration.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"8 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17306","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended. Hence, attempts to obtain efficient composites are growing. However, in most cases, the conventional production methods of scaffolds are energy-intensive and leave an impact on the environment. This work aims to develop a biocomposite scaffold integrating bacterial cellulose (BC), hydroxyapatite (HAp), and graphene oxide (GO), designated as “BC/HAp/GO”. All components are sourced primarily from agricultural and food waste as alternative means. BC, known for its biocompatibility, fine fiber network, and high porosity, serves as an ideal scaffold material. HAp, a naturally occurring bone component, contributes osteoconductive properties, while GO provides mechanical strength and biofunctionalization capabilities. The biomaterials were analyzed and characterized using a scanning electron microscope, a X-ray diffractometer, and a Fourier transform infrared spectrometer. The produced biocomposite scaffolds were tested for thermal stability, mechanical strength, and biocompatibility. The results showed a nanofibrous, porous network of BC, highly crystalline HAp particles, and well-oxygenated GO flakes with slight structural deformities. The synthesized biocomposite demonstrated promising characteristics, such as increased tensile strength due to added GO particles and higher bioactivity through the introduction of HAp. These inexpensively synthesized materials, marked by suitable surface morphology and cell adhesion properties, open potential applications in bone repair and regeneration.

Abstract Image

细菌纤维素/氧化石墨烯/羟基磷灰石生物复合材料:用于骨组织工程的可持续来源支架
骨组织工程需要具有定制特性的先进生物材料。在这方面,复合支架提供了一种整合所需功能的策略。这些支架有望提供足够的细胞活性,同时维持所需的骨修复所需的强度。因此,获得高效复合材料的尝试越来越多。然而,在大多数情况下,传统的脚手架生产方法是能源密集型的,对环境造成影响。本研究旨在开发一种整合细菌纤维素(BC)、羟基磷灰石(HAp)和氧化石墨烯(GO)的生物复合支架,命名为“BC/HAp/GO”。所有组件主要来自农业和食物垃圾作为替代方法。BC具有生物相容性好、纤维网细、孔隙率高等优点,是理想的支架材料。羟基磷灰石是一种天然的骨成分,具有骨导电性,而氧化石墨烯则具有机械强度和生物功能化能力。利用扫描电子显微镜、x射线衍射仪和傅里叶变换红外光谱仪对生物材料进行了分析和表征。对制备的生物复合材料支架进行了热稳定性、机械强度和生物相容性测试。结果表明,纳米纤维、多孔BC网络、高结晶HAp颗粒和氧化石墨烯薄片具有轻微的结构变形。合成的生物复合材料表现出了很好的特性,例如由于添加了氧化石墨烯颗粒而提高了拉伸强度,以及通过引入HAp而提高了生物活性。这些廉价的合成材料具有合适的表面形态和细胞粘附特性,在骨修复和再生方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信