Fluid-Actuated Nano–Micro–Macro Structure Morphing Enables Smart Multispectrum Compatible Stealth

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiuyue Yang, Leilei Liang, Chen Li, Baoshan Zhang, Yue Zhao, Shujuan Tan, Guangbin Ji
{"title":"Fluid-Actuated Nano–Micro–Macro Structure Morphing Enables Smart Multispectrum Compatible Stealth","authors":"Xiuyue Yang, Leilei Liang, Chen Li, Baoshan Zhang, Yue Zhao, Shujuan Tan, Guangbin Ji","doi":"10.1021/acs.nanolett.4c05494","DOIUrl":null,"url":null,"abstract":"Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer. After fluid actuation, the deformable elastomer layer transmits mechanical strain to the mechanochromic layer, thereby altering the visible reflectance wavelengths in [568, 699] nm. Concurrently, the pumped-in liquid reconfigures the spatial structure parameter to alter microwave resonance and diffraction for dynamic radar absorption, enabling dynamic radar absorption with significant broadband absorption at [8.16, 18.0] GHz. Using the heat-absorption property also achieves dynamic infrared stealth, shown by a Δ<i>T</i> ≈ 16.5 °C temperature difference. Additionally, the device exhibits a rapid response time (∼1 s), excellent cycling performance (100 cycles), and programmability (10 codes), offering a new stealth strategy.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer. After fluid actuation, the deformable elastomer layer transmits mechanical strain to the mechanochromic layer, thereby altering the visible reflectance wavelengths in [568, 699] nm. Concurrently, the pumped-in liquid reconfigures the spatial structure parameter to alter microwave resonance and diffraction for dynamic radar absorption, enabling dynamic radar absorption with significant broadband absorption at [8.16, 18.0] GHz. Using the heat-absorption property also achieves dynamic infrared stealth, shown by a ΔT ≈ 16.5 °C temperature difference. Additionally, the device exhibits a rapid response time (∼1 s), excellent cycling performance (100 cycles), and programmability (10 codes), offering a new stealth strategy.

Abstract Image

现代探测技术促使伪装技术向多光谱兼容和动态调节方向发展。然而,由于频段原理不同,开发这种隐形技术具有挑战性。在此,本研究提出了一种流体驱动多光谱兼容智能隐形装置的设计理念,该装置采用了可变形机械变色层/弹性体和通道式电介质层。流体驱动后,可变形弹性体层将机械应变传递到机械变色层,从而改变[568, 699] nm 波长的可见光反射波长。与此同时,泵入液体会重新配置空间结构参数,以改变微波共振和衍射,从而实现动态雷达吸收,在[8.16, 18.0] GHz 范围内实现显著的宽带吸收。利用吸热特性还能实现动态红外隐身,ΔT ≈ 16.5 °C 的温差就证明了这一点。此外,该器件还具有快速响应时间(∼1 秒)、出色的循环性能(100 次循环)和可编程性(10 个代码),提供了一种新的隐身策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信