Suppressing Ionic-to-Electronic Conduction Transition on Cathode Interface Enables 4.4 V Poly(ethylene oxide)-Based All-Solid-State Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zi-Xiang Kong, Zhe Xiong, Jian-Fang Wu, Jun Jin, Yuxiao Lin, Yunsong Li, Jilei Liu
{"title":"Suppressing Ionic-to-Electronic Conduction Transition on Cathode Interface Enables 4.4 V Poly(ethylene oxide)-Based All-Solid-State Batteries","authors":"Zi-Xiang Kong, Zhe Xiong, Jian-Fang Wu, Jun Jin, Yuxiao Lin, Yunsong Li, Jilei Liu","doi":"10.1021/acsenergylett.4c02840","DOIUrl":null,"url":null,"abstract":"The implementation of energy-dense poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries is impeded by the limited working voltage and underexplored cathode interfacial reaction mechanism. Here, through analyzing interfacial resistances using the Wagner model, the change of the interfacial reaction parameter (<i>k</i>) is proposed to unveil the ionic-to-electronic conduction transition and kinetic formation mechanism of the cathode-electrolyte-interphase (CEI) under voltage ≥4.2 V, thereby constructing ionic conductor-dominated CEIs to enable 4.4 V batteries. With the open-circuit voltage ≥4.2 V, <i>k</i><sub>1</sub> and <i>k</i><sub>2</sub> are derived; <i>k</i><sub>2</sub> is smaller than <i>k</i><sub>1</sub>, caused by the enhanced electronic conduction and indicating the ionic-to-electronic conduction transition of the CEI. Moreover, by introducing LiPO<sub>2</sub>F<sub>2</sub> in high-concentration solid electrolytes, ionic conductors Li<sub>3</sub>PO<sub>4</sub> and Li<sub><i>x</i></sub>POF<sub><i>y</i></sub> dominate the CEI, overcoming the ionic-to-electronic conduction transition; the resulting 4.4 V cell bears a discharge capacity of 130 mAh/g with a retention of 90% after 100 cycles, about 2 times that of the normal PEO-based cell.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"63 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02840","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of energy-dense poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries is impeded by the limited working voltage and underexplored cathode interfacial reaction mechanism. Here, through analyzing interfacial resistances using the Wagner model, the change of the interfacial reaction parameter (k) is proposed to unveil the ionic-to-electronic conduction transition and kinetic formation mechanism of the cathode-electrolyte-interphase (CEI) under voltage ≥4.2 V, thereby constructing ionic conductor-dominated CEIs to enable 4.4 V batteries. With the open-circuit voltage ≥4.2 V, k1 and k2 are derived; k2 is smaller than k1, caused by the enhanced electronic conduction and indicating the ionic-to-electronic conduction transition of the CEI. Moreover, by introducing LiPO2F2 in high-concentration solid electrolytes, ionic conductors Li3PO4 and LixPOFy dominate the CEI, overcoming the ionic-to-electronic conduction transition; the resulting 4.4 V cell bears a discharge capacity of 130 mAh/g with a retention of 90% after 100 cycles, about 2 times that of the normal PEO-based cell.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信