Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Cong Liu, Zhengtao Wang, Fupeng Li, Yu Gao, Yang Xiao
{"title":"Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics","authors":"Cong Liu, Zhengtao Wang, Fupeng Li, Yu Gao, Yang Xiao","doi":"10.1007/s10712-024-09871-7","DOIUrl":null,"url":null,"abstract":"<p>Gravity forward modeling provides important high-resolution information for the development of global gravity models, and can also be applied in many studies, e.g., topographic/isostatic effects computation and Bouguer anomaly maps compilation. In this paper, we present efficient spectral forward modeling approaches in the spheroidal harmonic domain, based on a single layer with constant density or volumetric layers with laterally varying density. With the binomial series expansion applied in spheroidal harmonic gravity forward modeling, the computational cost of these approaches is much lower than similar approaches. In both layering cases, we derive topographic potential models up to degree and order (d/o) 2190 by applying the approaches proposed here. Our methodology is evaluated by comparing these outcome models with other similar topographic potential models derived from spherical harmonic solutions. We find that topographic potentials from spheroidal and spherical harmonic approaches are in great agreement. Finally, the model named EHFM_Earth_7200 with a maximum degree of 7200 was derived by a layer-based approach. The evaluations by ground-truth data show that EHFM_Earth_7200 improves GO_CONS_GCF_2_DIR_R6 by 4% over Antarctica, and improves EGM2008 by ~ 34% over northern Canada. A global map of Bouguer gravity anomaly was also compiled with EHFM_Earth_7200 and EGM2008. As the main conclusion of this work, the new model EHFM_Earth_7200 is beneficial for investigating and modeling the Earth’s external gravity field, the new approaches have comparable accuracy to spherical harmonic approaches and are more suitable for practical use with guaranteed convergence regions because they are performed in the spheroidal harmonic domain.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"58 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10712-024-09871-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gravity forward modeling provides important high-resolution information for the development of global gravity models, and can also be applied in many studies, e.g., topographic/isostatic effects computation and Bouguer anomaly maps compilation. In this paper, we present efficient spectral forward modeling approaches in the spheroidal harmonic domain, based on a single layer with constant density or volumetric layers with laterally varying density. With the binomial series expansion applied in spheroidal harmonic gravity forward modeling, the computational cost of these approaches is much lower than similar approaches. In both layering cases, we derive topographic potential models up to degree and order (d/o) 2190 by applying the approaches proposed here. Our methodology is evaluated by comparing these outcome models with other similar topographic potential models derived from spherical harmonic solutions. We find that topographic potentials from spheroidal and spherical harmonic approaches are in great agreement. Finally, the model named EHFM_Earth_7200 with a maximum degree of 7200 was derived by a layer-based approach. The evaluations by ground-truth data show that EHFM_Earth_7200 improves GO_CONS_GCF_2_DIR_R6 by 4% over Antarctica, and improves EGM2008 by ~ 34% over northern Canada. A global map of Bouguer gravity anomaly was also compiled with EHFM_Earth_7200 and EGM2008. As the main conclusion of this work, the new model EHFM_Earth_7200 is beneficial for investigating and modeling the Earth’s external gravity field, the new approaches have comparable accuracy to spherical harmonic approaches and are more suitable for practical use with guaranteed convergence regions because they are performed in the spheroidal harmonic domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信