Enhanced Antiglioma Effect by a Vitamin D3-Inserted Lipid Hybrid Neutrophil Membrane Biomimetic Multimodal Nanoplatform

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-18 DOI:10.1021/acsnano.4c13470
Weichong He, Wei Lv, Linfeng Liu, Yue Gong, Kefan Song, Jiangna Xu, Wei Zhao, Shengnan Li, Zhiyi Min, Qinhua Chen, Jiaqing Yin, Yuqin Chen, Hufeng Fang, Hongliang Xin, Xiangming Fang
{"title":"Enhanced Antiglioma Effect by a Vitamin D3-Inserted Lipid Hybrid Neutrophil Membrane Biomimetic Multimodal Nanoplatform","authors":"Weichong He, Wei Lv, Linfeng Liu, Yue Gong, Kefan Song, Jiangna Xu, Wei Zhao, Shengnan Li, Zhiyi Min, Qinhua Chen, Jiaqing Yin, Yuqin Chen, Hufeng Fang, Hongliang Xin, Xiangming Fang","doi":"10.1021/acsnano.4c13470","DOIUrl":null,"url":null,"abstract":"Glioblastoma, the most prevalent malignant brain tumor, is a lethal threat to human health, with aggressive and infiltrative growth characteristics that compromise the clinical treatment. Herein, we developed a vitamin D3-inserted lipid hybrid neutrophil membrane biomimetic multimodal nanoplatform (designated as NED@MnO<sub>2</sub>-DOX) through doxorubicin (DOX)-loaded manganese dioxide nanoparticles (MnO<sub>2</sub>) which were coated with a vitamin D<sub>3</sub>-inserted lipid hybrid neutrophil membrane. It was demonstrated that in addition to chemotherapy and chemo-dynamic therapy efficacy, NED@MnO<sub>2</sub>-DOX exhibited great power to activate and amplify immune responses related to the cGAS STING pathway, bolstering the secretion of type I interferon-β and proinflammatory cytokines, promoting the maturation of DC cells and infiltration of CD8<sup>+</sup>T cells into the glioma tissue, thereby reversing the immunosuppressive microenvironment of glioma from a “cold” tumor to a “hot” tumor. The biomimetic multimodal nanoplatform has potential as a multimodal strategy for glioma-targeted treatment, especially holding considerable promise for the development of innate immune therapy for glioma.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"86 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma, the most prevalent malignant brain tumor, is a lethal threat to human health, with aggressive and infiltrative growth characteristics that compromise the clinical treatment. Herein, we developed a vitamin D3-inserted lipid hybrid neutrophil membrane biomimetic multimodal nanoplatform (designated as NED@MnO2-DOX) through doxorubicin (DOX)-loaded manganese dioxide nanoparticles (MnO2) which were coated with a vitamin D3-inserted lipid hybrid neutrophil membrane. It was demonstrated that in addition to chemotherapy and chemo-dynamic therapy efficacy, NED@MnO2-DOX exhibited great power to activate and amplify immune responses related to the cGAS STING pathway, bolstering the secretion of type I interferon-β and proinflammatory cytokines, promoting the maturation of DC cells and infiltration of CD8+T cells into the glioma tissue, thereby reversing the immunosuppressive microenvironment of glioma from a “cold” tumor to a “hot” tumor. The biomimetic multimodal nanoplatform has potential as a multimodal strategy for glioma-targeted treatment, especially holding considerable promise for the development of innate immune therapy for glioma.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信