Contribution of anthropogenic aerosol and greenhouse gas emissions to changes in summer upper-tropospheric thermal contrast between Asia and the North Pacific

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Peilin Li, Botao Zhou, Dapeng Zhang, Wenxin Xie, Zhicong Yin, Yanyan Huang, Bo Sun, Qiaohong Sun
{"title":"Contribution of anthropogenic aerosol and greenhouse gas emissions to changes in summer upper-tropospheric thermal contrast between Asia and the North Pacific","authors":"Peilin Li, Botao Zhou, Dapeng Zhang, Wenxin Xie, Zhicong Yin, Yanyan Huang, Bo Sun, Qiaohong Sun","doi":"10.1038/s41612-024-00865-1","DOIUrl":null,"url":null,"abstract":"Change of zonal thermal contrast in the upper troposphere (ZTUT) between Asia and the North Pacific is a highly concerned issue, as it profoundly influences the Northern hemispheric climate. However, the physical reasons, particularly the anthropogenic influences on the ZTUT change are not well understood. Here, we show that increased aerosols and greenhouse gases tend to weaken the summer Asian-Pacific ZTUT, through affecting radiation processes over the Tibetan Plateau and altering moist enthalpy advections over the North Pacific, respectively. Under the present climate, aerosol variations play a leading role in the trend change of summer ZTUT from a deceasing to an increasing pattern in the mid-1980s. These decreasing and increasing trends are, respectively, enhanced and attenuated by greenhouse gas emissions. Toward the end of this century under the SSP2–4.5 scenario, continuous increases in greenhouse gases are expected to become the dominant contributor for projected weakening of summer ZTUT, with the rate offset by decreases in aerosols.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00865-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00865-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Change of zonal thermal contrast in the upper troposphere (ZTUT) between Asia and the North Pacific is a highly concerned issue, as it profoundly influences the Northern hemispheric climate. However, the physical reasons, particularly the anthropogenic influences on the ZTUT change are not well understood. Here, we show that increased aerosols and greenhouse gases tend to weaken the summer Asian-Pacific ZTUT, through affecting radiation processes over the Tibetan Plateau and altering moist enthalpy advections over the North Pacific, respectively. Under the present climate, aerosol variations play a leading role in the trend change of summer ZTUT from a deceasing to an increasing pattern in the mid-1980s. These decreasing and increasing trends are, respectively, enhanced and attenuated by greenhouse gas emissions. Toward the end of this century under the SSP2–4.5 scenario, continuous increases in greenhouse gases are expected to become the dominant contributor for projected weakening of summer ZTUT, with the rate offset by decreases in aerosols.

Abstract Image

Abstract Image

人为气溶胶和温室气体排放对亚洲和北太平洋夏季高层对流层热对比变化的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信