Zhenhao Xu, Yu Kosaka, Masaki Toda, Tomoki Iwakiri, Gang Huang, Fei Ji, Ayumu Miyamoto, Weichen Tao
{"title":"Irreversibility of winter precipitation over the Northeastern Pacific and Western North America against CO2 forcing","authors":"Zhenhao Xu, Yu Kosaka, Masaki Toda, Tomoki Iwakiri, Gang Huang, Fei Ji, Ayumu Miyamoto, Weichen Tao","doi":"10.1038/s41612-024-00864-2","DOIUrl":null,"url":null,"abstract":"Comprehending the resilience of regional hydroclimate in response to CO2 removal is essential for guiding future mitigation and adaptation strategies. Using an ensemble of model simulations forced by idealized CO2 ramp-up followed by ramp-down, here we show that the winter precipitation over the Northeastern Pacific and Western North America (NPWNA) is irreversible even if global warming is reversed back to 2 °C level. This asymmetric change features a tripolar pattern and is tied to Aleutian Low intensification, which is driven by both zonal and meridional gradients of sea surface temperature (SST) anomalies in the tropical central-eastern Pacific. Distinct from the zonal SST gradient—explained by different timescales of surface and subsurface warming and ocean dynamical processes, amplified through the Bjerknes feedback—the meridional SST gradient originates from the southward shift of the intertropical convergence zone, maintained by the wind-evaporation-SST feedback. Our findings suggest that the regional hydrological risks over the NPWNA induced by CO2 ramp-up cannot be fully eliminated by CO2 removal even if the global warming level is restored back.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00864-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00864-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehending the resilience of regional hydroclimate in response to CO2 removal is essential for guiding future mitigation and adaptation strategies. Using an ensemble of model simulations forced by idealized CO2 ramp-up followed by ramp-down, here we show that the winter precipitation over the Northeastern Pacific and Western North America (NPWNA) is irreversible even if global warming is reversed back to 2 °C level. This asymmetric change features a tripolar pattern and is tied to Aleutian Low intensification, which is driven by both zonal and meridional gradients of sea surface temperature (SST) anomalies in the tropical central-eastern Pacific. Distinct from the zonal SST gradient—explained by different timescales of surface and subsurface warming and ocean dynamical processes, amplified through the Bjerknes feedback—the meridional SST gradient originates from the southward shift of the intertropical convergence zone, maintained by the wind-evaporation-SST feedback. Our findings suggest that the regional hydrological risks over the NPWNA induced by CO2 ramp-up cannot be fully eliminated by CO2 removal even if the global warming level is restored back.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.