Arunik Baruah, Dimitrios Bousiotis, Seny Damayanti, Alessandro Bigi, Grazia Ghermandi, O. Ghaffarpasand, Roy M. Harrison, Francis D. Pope
{"title":"A novel spatiotemporal prediction approach to fill air pollution data gaps using mobile sensors, machine learning and citizen science techniques","authors":"Arunik Baruah, Dimitrios Bousiotis, Seny Damayanti, Alessandro Bigi, Grazia Ghermandi, O. Ghaffarpasand, Roy M. Harrison, Francis D. Pope","doi":"10.1038/s41612-024-00859-z","DOIUrl":null,"url":null,"abstract":"Particulate Matter (PM) air pollution poses significant threats to public health. We introduce a novel machine learning methodology to predict PM2.5 levels at 30 m long segments along the roads and at a temporal scale of 10 seconds. A hybrid dataset was curated from an intensive PM campaign in Selly Oak, Birmingham, UK, utilizing citizen scientists and low-cost instruments strategically placed in static and mobile settings. Spatially resolved proxy variables, meteorological parameters, and PM properties were integrated, enabling a fine-grained analysis of PM2.5. Calibration involved three approaches: Standard Random Forest Regression, Sensor Transferability and Road Transferability Evaluations. This methodology significantly increased spatial resolution beyond what is possible with regulatory monitoring, thereby improving exposure assessments. The findings underscore the importance of machine learning approaches and citizen science in advancing our understanding of PM pollution, with a small number of participants significantly enhancing local air quality assessment for thousands of residents.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00859-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00859-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate Matter (PM) air pollution poses significant threats to public health. We introduce a novel machine learning methodology to predict PM2.5 levels at 30 m long segments along the roads and at a temporal scale of 10 seconds. A hybrid dataset was curated from an intensive PM campaign in Selly Oak, Birmingham, UK, utilizing citizen scientists and low-cost instruments strategically placed in static and mobile settings. Spatially resolved proxy variables, meteorological parameters, and PM properties were integrated, enabling a fine-grained analysis of PM2.5. Calibration involved three approaches: Standard Random Forest Regression, Sensor Transferability and Road Transferability Evaluations. This methodology significantly increased spatial resolution beyond what is possible with regulatory monitoring, thereby improving exposure assessments. The findings underscore the importance of machine learning approaches and citizen science in advancing our understanding of PM pollution, with a small number of participants significantly enhancing local air quality assessment for thousands of residents.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.