Hydrothermal gasification of waste biomass and plastics into hydrogen-rich syngas: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pankaj Kumar, Ayush Dave, Sivamohan N. Reddy, Sonil Nanda
{"title":"Hydrothermal gasification of waste biomass and plastics into hydrogen-rich syngas: a review","authors":"Pankaj Kumar, Ayush Dave, Sivamohan N. Reddy, Sonil Nanda","doi":"10.1007/s10311-024-01793-5","DOIUrl":null,"url":null,"abstract":"<p>The current global greenhouse gas emissions have increased by over 90% since 1860 primarily due to our overreliance on fossil fuels, petrochemicals and their derivatives. Production of petrochemical plastics is also reaching 400 million metric tons in 2023. The lack of effective thermochemical processes for converting wet feedstocks and complex residues such as plastics is calling for hydrothermal gasification as an efficient approach to producing syngas. The demand for hydrogen production through greener approaches is also rising to compete with the commercial steam reforming of natural gas. Here, we review the conversion of biomass and plastics by hydrothermal gasification into hydrogen-rich syngas with a focus on the process parameters influencing the conversion of a variety of feedstock types. Parameters influencing hydrothermal gasification of biomass and plastics include temperature, pressure, reaction time, feedstock concentration, catalysts and reactor types. Several synergetic effects also influence product distribution during the co-processing of biomass and plastics during hydrothermal gasification. Processes that impact biomass conversion to syngas are hydrolysis, water–gas shift, methanation, hydrogenation, steam reforming and polymerization.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"20 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01793-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current global greenhouse gas emissions have increased by over 90% since 1860 primarily due to our overreliance on fossil fuels, petrochemicals and their derivatives. Production of petrochemical plastics is also reaching 400 million metric tons in 2023. The lack of effective thermochemical processes for converting wet feedstocks and complex residues such as plastics is calling for hydrothermal gasification as an efficient approach to producing syngas. The demand for hydrogen production through greener approaches is also rising to compete with the commercial steam reforming of natural gas. Here, we review the conversion of biomass and plastics by hydrothermal gasification into hydrogen-rich syngas with a focus on the process parameters influencing the conversion of a variety of feedstock types. Parameters influencing hydrothermal gasification of biomass and plastics include temperature, pressure, reaction time, feedstock concentration, catalysts and reactor types. Several synergetic effects also influence product distribution during the co-processing of biomass and plastics during hydrothermal gasification. Processes that impact biomass conversion to syngas are hydrolysis, water–gas shift, methanation, hydrogenation, steam reforming and polymerization.

将废弃生物质和塑料水热气化为富氢合成气:综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信