Xinlin Zhao, Yuanchang Wang, Chenyuan Wang, Wei Zhou, Da Ouyang, Shuaishuai Gao, Xiaofei Tan, Rong Huang, Yuan Guo
{"title":"Chitooligosaccharide application enhanced the growth and phytoremediation efficiency of industrial hemp in Cd-contaminated soils","authors":"Xinlin Zhao, Yuanchang Wang, Chenyuan Wang, Wei Zhou, Da Ouyang, Shuaishuai Gao, Xiaofei Tan, Rong Huang, Yuan Guo","doi":"10.1016/j.biortech.2024.131998","DOIUrl":null,"url":null,"abstract":"Hemp has been widely used for cadmium (Cd) remediation. However, its remediation efficiency needs to be improved. Chitooligosaccharides can enhance plant resistance and growth; however, their effects on hemp for Cd-remediation remain unclear. Herein, a greenhouse pot experiment was conducted to investigate the effects of three doses (0, 22.5, and 45 μg m<ce:sup loc=\"post\">−2</ce:sup>) of chitooligosaccharides (COS), chitin-oligosaccharides (NACOS), and hetero-chitooligosaccharides (HTCOS) on the growth and Cd-remediation efficiency of hemp. Results showed that chitooligosaccharides promoted the antioxidant system and aerial biomass (maximum 84 %) depending on doses and types. COS (22.5 μg m<ce:sup loc=\"post\">−2</ce:sup> under 60 mg cadmium kg<ce:sup loc=\"post\">−1</ce:sup> soil), NACOS, and HTCOS significantly elevated the Cd concentration in hemp. Consequently, NACOS and HTCOS (45 μg m<ce:sup loc=\"post\">−2</ce:sup>) significantly increased the average Cd removal up to 61 % and 81 %, respectively, compared with the control. Therefore, spraying chitooligosaccharides can enhance growth and phytoremediation efficiency of hemp by elevating aerial biomass and cadmium concentration of hemp.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"62 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131998","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Hemp has been widely used for cadmium (Cd) remediation. However, its remediation efficiency needs to be improved. Chitooligosaccharides can enhance plant resistance and growth; however, their effects on hemp for Cd-remediation remain unclear. Herein, a greenhouse pot experiment was conducted to investigate the effects of three doses (0, 22.5, and 45 μg m−2) of chitooligosaccharides (COS), chitin-oligosaccharides (NACOS), and hetero-chitooligosaccharides (HTCOS) on the growth and Cd-remediation efficiency of hemp. Results showed that chitooligosaccharides promoted the antioxidant system and aerial biomass (maximum 84 %) depending on doses and types. COS (22.5 μg m−2 under 60 mg cadmium kg−1 soil), NACOS, and HTCOS significantly elevated the Cd concentration in hemp. Consequently, NACOS and HTCOS (45 μg m−2) significantly increased the average Cd removal up to 61 % and 81 %, respectively, compared with the control. Therefore, spraying chitooligosaccharides can enhance growth and phytoremediation efficiency of hemp by elevating aerial biomass and cadmium concentration of hemp.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.