Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar
{"title":"Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach","authors":"Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar","doi":"10.1016/j.cnsns.2024.108525","DOIUrl":null,"url":null,"abstract":"Fractional-order derivative-based modeling is crucial for describing real-world forecasting problems and analyzing proposed models. It provides an advanced framework for examining intricate variations in various systems, enhancing understanding and analysis. We present a new fractional order nonlinear model for dynamics and forecasting of nitrogen oxides <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mtext>NO</mml:mtext></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:math> and ozone <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:math> in the atmosphere, crucial for air quality regulation and smog formation. The study compares invariant regions and solution pathways within complex reaction mechanisms impacting the ozone layer. The study uses Banach’s contraction theorem, Schauder’s fixed-point theorem, and fixed-point theory to study a proposed model. Fundamental equations are studied, and local sensitivity analysis is performed using MATLAB’s Sim-Biology toolbox. The model is stabilized using the linear feedback regulate method, considering a fractional-order system with a managed design. Moment quintile regression is used to validate coefficient parameters for forecasting and modeling. Theoretical predictions are validated using the two-step Newton Polynomial Method, and numerical results show high agreement between theoretical analysis and numerical results. The research introduces a new method for quantifying invariant curve disparities using advanced Model Reduction Techniques (MRTs), focusing on the proximity between model predictions and actual data points. The method identifies achievable invariant regions and influential parameters for <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mtext>NO</mml:mtext><mml:mi>x</mml:mi></mml:mrow></mml:math> and <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math> under environmental stressors. Results validate theoretical and experimental findings by employing local as well as non-singular kernels at various fractional order values and fractal dimensions to show the strong memory effect.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"53 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108525","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional-order derivative-based modeling is crucial for describing real-world forecasting problems and analyzing proposed models. It provides an advanced framework for examining intricate variations in various systems, enhancing understanding and analysis. We present a new fractional order nonlinear model for dynamics and forecasting of nitrogen oxides (NOx) and ozone (O3) in the atmosphere, crucial for air quality regulation and smog formation. The study compares invariant regions and solution pathways within complex reaction mechanisms impacting the ozone layer. The study uses Banach’s contraction theorem, Schauder’s fixed-point theorem, and fixed-point theory to study a proposed model. Fundamental equations are studied, and local sensitivity analysis is performed using MATLAB’s Sim-Biology toolbox. The model is stabilized using the linear feedback regulate method, considering a fractional-order system with a managed design. Moment quintile regression is used to validate coefficient parameters for forecasting and modeling. Theoretical predictions are validated using the two-step Newton Polynomial Method, and numerical results show high agreement between theoretical analysis and numerical results. The research introduces a new method for quantifying invariant curve disparities using advanced Model Reduction Techniques (MRTs), focusing on the proximity between model predictions and actual data points. The method identifies achievable invariant regions and influential parameters for NOx and O3 under environmental stressors. Results validate theoretical and experimental findings by employing local as well as non-singular kernels at various fractional order values and fractal dimensions to show the strong memory effect.
用可持续分形分数法量化大气分析差异的稳定性和化学模型
基于分数阶导数的建模对于描述现实世界的预测问题和分析建议的模型至关重要。它为研究各种系统中的复杂变化提供了一个先进的框架,增强了对问题的理解和分析。我们提出了一个新的分数阶非线性模型,用于大气中氮氧化物(NOx)和臭氧(O3)的动力学和预测,这对空气质量监管和烟雾的形成至关重要。研究比较了影响臭氧层的复杂反应机制中的不变区域和求解途径。研究利用巴纳赫收缩定理、Schauder 定点定理和定点理论来研究一个拟议模型。研究了基本方程,并使用 MATLAB 的 Sim-Biology 工具箱进行了局部敏感性分析。考虑到分数阶系统具有管理设计,使用线性反馈调节方法对模型进行稳定。矩五分回归用于验证预测和建模的系数参数。使用两步牛顿多项式法对理论预测进行了验证,数值结果表明理论分析与数值结果高度一致。研究介绍了一种利用先进的模型还原技术(MRT)量化不变曲线差异的新方法,重点关注模型预测与实际数据点之间的接近程度。该方法确定了在环境压力下氮氧化物和臭氧的可实现不变区域和有影响的参数。通过采用不同分数阶值和分形维度的局部和非奇异核来显示强大的记忆效应,结果验证了理论和实验结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信