Xinxin Hang, Xiaoju Wang, Jiaxin Chen, Meng Du, Yangyang Sun, Yong Li, Huan Pang
{"title":"Enhancing the Electrochemical Energy Storage of Metal–Organic Frameworks: Linker Engineering and Size Optimization","authors":"Xinxin Hang, Xiaoju Wang, Jiaxin Chen, Meng Du, Yangyang Sun, Yong Li, Huan Pang","doi":"10.1021/acs.inorgchem.4c04771","DOIUrl":null,"url":null,"abstract":"The electric conductivity and charge transport efficiency of metal–organic frameworks (MOFs) dictate the effective utilization of built-in redox centers and electrochemical redox kinetics and therefore electrochemical performance. Reticular chemistry and the tunable microcosmic shape of MOFs allow for improving their electric conductivity and charge transfer efficiency. Herein, we synthesized two Ni-MOFs (Ni-tdc-bpy and Ni-tdc-bpe) by the solvothermal reaction of Ni<sup>2+</sup> ions with 2,5-thiophenedicarboxylic acid (H<sub>2</sub>tdc) in the presence of conjugated 4,4′-bipyridyl (bpy) and 1,2-di(4-pyridyl)ethylene (bpe) coligands, respectively. We also synthesized two thinning Ni-MOFs (Ni-tdc-bpy(0.5) and Ni-tdc-bpe(0.5)) by adjusting the amounts of bpy and bpe, respectively. Experimental investigations revealed that linker engineering by tuning the delocalization of the N-donor dipyridyl coligands and size optimization by controlling the amount of the coligand rendered the Ni-MOF with significantly improved electrical conductivity and charge transport efficiency. Among them, Ni-tdc-bpe(0.5) possessing the bpe coligand with more strong delocalization and an optimized size exhibited an enhanced specific capacitance of 650 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup>. Moreover, the hybrid supercapacitor constructed from Ni-tdc-bpe(0.5) and activated carbon delivered an excellent energy density of 33.6 Wh kg<sup>–1</sup> at a power density of 232.6 W kg<sup>–1</sup>.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04771","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The electric conductivity and charge transport efficiency of metal–organic frameworks (MOFs) dictate the effective utilization of built-in redox centers and electrochemical redox kinetics and therefore electrochemical performance. Reticular chemistry and the tunable microcosmic shape of MOFs allow for improving their electric conductivity and charge transfer efficiency. Herein, we synthesized two Ni-MOFs (Ni-tdc-bpy and Ni-tdc-bpe) by the solvothermal reaction of Ni2+ ions with 2,5-thiophenedicarboxylic acid (H2tdc) in the presence of conjugated 4,4′-bipyridyl (bpy) and 1,2-di(4-pyridyl)ethylene (bpe) coligands, respectively. We also synthesized two thinning Ni-MOFs (Ni-tdc-bpy(0.5) and Ni-tdc-bpe(0.5)) by adjusting the amounts of bpy and bpe, respectively. Experimental investigations revealed that linker engineering by tuning the delocalization of the N-donor dipyridyl coligands and size optimization by controlling the amount of the coligand rendered the Ni-MOF with significantly improved electrical conductivity and charge transport efficiency. Among them, Ni-tdc-bpe(0.5) possessing the bpe coligand with more strong delocalization and an optimized size exhibited an enhanced specific capacitance of 650 F g–1 at 0.5 A g–1. Moreover, the hybrid supercapacitor constructed from Ni-tdc-bpe(0.5) and activated carbon delivered an excellent energy density of 33.6 Wh kg–1 at a power density of 232.6 W kg–1.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.