{"title":"Porphyrin-engineered metal−organic frameworks for photo/electrochemical sensing: Preparation and mechanisms","authors":"Zhishuang Yuan, Huining Chai, Yi Huang, Ziyan Zhang, Weiqiang Tan, Yingjie Sun, Jiping Ma, Guangyao Zhang","doi":"10.1016/j.ccr.2024.216385","DOIUrl":null,"url":null,"abstract":"Photo/electrochemical sensing technology currently shows significant application potential in medical diagnostics, environmental monitoring, and food safety, gradually becoming a research focus in recent years. Novel materials with high photo/electroactivity, environmental friendliness and controllable structures are urgently needed. Metal−organic frameworks (MOFs) have attracted considerable interest because of their high specific surface area and adjustable structures. Integrating porphyrin molecules into MOF structures to form porphyrin-engineered MOFs can effectively suppress the self-aggregation of porphyrin molecules and enhance their photoelectric properties. Therefore, these materials are highly favored in photo/electrochemical sensing applications. This review details the types and preparation methods of porphyrin-engineered MOFs, including porphyrin MOFs, porphyrin@MOFs, and porphyrin-engineered MOF composites. Then, we summarize the mechanisms of porphyrin-engineered MOFs in photochemical sensing, electrochemical sensing, electrochemiluminescence sensing, photoelectrochemical sensing, and photo/electrochemical dual-mode sensing. Finally, we explore the prospects, challenges and opportunities for porphyrin-engineered MOFs in photo/electrochemical sensing applications. This review provides a valuable perspective for the preparation and sensing applications of multifunctional nanomaterials.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"88 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2024.216385","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Photo/electrochemical sensing technology currently shows significant application potential in medical diagnostics, environmental monitoring, and food safety, gradually becoming a research focus in recent years. Novel materials with high photo/electroactivity, environmental friendliness and controllable structures are urgently needed. Metal−organic frameworks (MOFs) have attracted considerable interest because of their high specific surface area and adjustable structures. Integrating porphyrin molecules into MOF structures to form porphyrin-engineered MOFs can effectively suppress the self-aggregation of porphyrin molecules and enhance their photoelectric properties. Therefore, these materials are highly favored in photo/electrochemical sensing applications. This review details the types and preparation methods of porphyrin-engineered MOFs, including porphyrin MOFs, porphyrin@MOFs, and porphyrin-engineered MOF composites. Then, we summarize the mechanisms of porphyrin-engineered MOFs in photochemical sensing, electrochemical sensing, electrochemiluminescence sensing, photoelectrochemical sensing, and photo/electrochemical dual-mode sensing. Finally, we explore the prospects, challenges and opportunities for porphyrin-engineered MOFs in photo/electrochemical sensing applications. This review provides a valuable perspective for the preparation and sensing applications of multifunctional nanomaterials.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.