Anna M. Schoepf, Maximilian Gebhart, Martin Federspiel, Isabel Heidegger, Martin Puhr, Madlen Hotze, Marcel Kwiatkowski, Andreas Pircher, Dominik Wolf, Sieghart Sopper, Ronald Gust, Stefan Salcher
{"title":"Eradication of Therapy-Resistant Cancer Stem Cells by Novel Telmisartan Derivatives","authors":"Anna M. Schoepf, Maximilian Gebhart, Martin Federspiel, Isabel Heidegger, Martin Puhr, Madlen Hotze, Marcel Kwiatkowski, Andreas Pircher, Dominik Wolf, Sieghart Sopper, Ronald Gust, Stefan Salcher","doi":"10.1021/acs.jmedchem.4c01865","DOIUrl":null,"url":null,"abstract":"The present structure–activity relationship study investigates the development of novel chemosensitizers targeting therapy-resistant cancer stem cells (CSCs). We used 4′-((2-propyl-1<i>H</i>-benzo[<i>d</i>]imidazole-1-yl)methyl)-[1,1′-biphenyl]-2-carboxylic acid, derived from the angiotensin II type 1 receptor blocker telmisartan, as a lead structure, demonstrating that the biphenyl moiety is essential for chemosensitizing activity. Introducing a methyl carboxylate or carboxamide instead of the COOH-group significantly enhanced this effect, leading to the development of highly potent compounds. These novel, noncytotoxic chemosensitizers effectively target CSCs and overcome drug resistance by interfering with CSC persistence mechanisms─hyperactivated STAT5 signaling and increased drug transporter activity─with demonstrated efficacy in leukemia, ovarian, and prostate cancers. The carboxamide of telmisartan (telmi-amide, <b>7c</b>) significantly reduced tumor growth in an imatinib-resistant leukemia xenograft model, both as monotherapy and combined with imatinib, showing promising oral bioavailability and tolerability. In summary, telmisartan derivatives act as effective chemosensitizers and offer an innovative strategy for targeting CSCs in various malignant diseases.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"204 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01865","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present structure–activity relationship study investigates the development of novel chemosensitizers targeting therapy-resistant cancer stem cells (CSCs). We used 4′-((2-propyl-1H-benzo[d]imidazole-1-yl)methyl)-[1,1′-biphenyl]-2-carboxylic acid, derived from the angiotensin II type 1 receptor blocker telmisartan, as a lead structure, demonstrating that the biphenyl moiety is essential for chemosensitizing activity. Introducing a methyl carboxylate or carboxamide instead of the COOH-group significantly enhanced this effect, leading to the development of highly potent compounds. These novel, noncytotoxic chemosensitizers effectively target CSCs and overcome drug resistance by interfering with CSC persistence mechanisms─hyperactivated STAT5 signaling and increased drug transporter activity─with demonstrated efficacy in leukemia, ovarian, and prostate cancers. The carboxamide of telmisartan (telmi-amide, 7c) significantly reduced tumor growth in an imatinib-resistant leukemia xenograft model, both as monotherapy and combined with imatinib, showing promising oral bioavailability and tolerability. In summary, telmisartan derivatives act as effective chemosensitizers and offer an innovative strategy for targeting CSCs in various malignant diseases.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.