The stonesphere in agricultural soils: A microhabitat associated with rock fragments bridging rock and soil

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Felix Dittrich, Björn Klaes, Luise Brandt, Nora Groschopf, Sören Thiele-Bruhn
{"title":"The stonesphere in agricultural soils: A microhabitat associated with rock fragments bridging rock and soil","authors":"Felix Dittrich,&nbsp;Björn Klaes,&nbsp;Luise Brandt,&nbsp;Nora Groschopf,&nbsp;Sören Thiele-Bruhn","doi":"10.1111/ejss.70025","DOIUrl":null,"url":null,"abstract":"<p>Rock fragments (RFs) are abundant soil constituents, but are routinely excluded from soil analyses. Hence, their contribution to soil properties, and in particular to the microbiome, is incompletely understood. Therefore, shifts in microbial colonisation along the rock-to-soil continuum of topsoils from three agricultural sites with different sedimentary parent rock materials were investigated with particular attention to RFs. Microbial biomass and community composition were quantified using phospholipid fatty acid (PLFA) analysis for unweathered and weathered parent rock materials, two RF fractions (8–16 mm and 2–8 mm) and the fine earth (FE; &lt;2 mm). Trends in biogeochemical weathering, nutrient availability and soil organic matter (OM) development were assessed using mineralogical, geochemical and physical analyses. Actinobacterial PLFA was particularly abundant in parent rocks, where Actinobacteria likely contribute to rock weathering and the initiation of OM accumulation. Conversely, bacterial PLFAs were most abundant in the FE under nutrient- and OM-rich conditions. The integral role of RFs as a microbial habitat is demonstrated by a distinct fungal colonisation, which is enabled by the specific physical features of RFs in combination with the provision of inorganic nutrients. Our findings indicate that RFs are colonised by microbes and that differences in the community structure depend on mineralogical properties and chemical weathering status. We document that RFs are microhabitats with a significant potential to host microbial life in cultivated soils, and thus, could play an important role in biogeochemical cycling and the provision of soil functions in agroecosystems.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70025","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Rock fragments (RFs) are abundant soil constituents, but are routinely excluded from soil analyses. Hence, their contribution to soil properties, and in particular to the microbiome, is incompletely understood. Therefore, shifts in microbial colonisation along the rock-to-soil continuum of topsoils from three agricultural sites with different sedimentary parent rock materials were investigated with particular attention to RFs. Microbial biomass and community composition were quantified using phospholipid fatty acid (PLFA) analysis for unweathered and weathered parent rock materials, two RF fractions (8–16 mm and 2–8 mm) and the fine earth (FE; <2 mm). Trends in biogeochemical weathering, nutrient availability and soil organic matter (OM) development were assessed using mineralogical, geochemical and physical analyses. Actinobacterial PLFA was particularly abundant in parent rocks, where Actinobacteria likely contribute to rock weathering and the initiation of OM accumulation. Conversely, bacterial PLFAs were most abundant in the FE under nutrient- and OM-rich conditions. The integral role of RFs as a microbial habitat is demonstrated by a distinct fungal colonisation, which is enabled by the specific physical features of RFs in combination with the provision of inorganic nutrients. Our findings indicate that RFs are colonised by microbes and that differences in the community structure depend on mineralogical properties and chemical weathering status. We document that RFs are microhabitats with a significant potential to host microbial life in cultivated soils, and thus, could play an important role in biogeochemical cycling and the provision of soil functions in agroecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信