Rare earth elements accumulation and patterns in abiotic and biotic compartments of a large river system influenced by natural and anthropogenic sources in Eastern Canada.
Marie-Christine Lafrenière, Jean-François Lapierre, Dominic E. Ponton, Gilbert Cabana, Gesche Winkler, Marie Lefranc, Marc Amyot
{"title":"Rare earth elements accumulation and patterns in abiotic and biotic compartments of a large river system influenced by natural and anthropogenic sources in Eastern Canada.","authors":"Marie-Christine Lafrenière, Jean-François Lapierre, Dominic E. Ponton, Gilbert Cabana, Gesche Winkler, Marie Lefranc, Marc Amyot","doi":"10.1016/j.envpol.2024.125558","DOIUrl":null,"url":null,"abstract":"The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs. Understanding how organisms bioaccumulate REEs requires knowledge of their environmental conditions, exposure pathways, and ecological characteristics—areas few studies have explored. In this study, we examined the fate of REEs across abiotic (water, suspended sediments, and sediments) and biotic (invertebrates and fishes) compartments in the St. Lawrence River (Canada), identifying the main drivers of their accumulation and relative composition. The results were consistent with REE biodilution along the food chain, with concentrations greater in suspended (REEs = 76.1 – 241.4 μg·g<sup>-1</sup>) and bulk sediments (REEs = 4.2 – 204.2 μg·g<sup>-1</sup>). Higher concentrations were found in fine-grained sediments, with a relative enrichment in middle REEs, likely due to REE adsorption onto Fe- or Mn-bearing minerals. Nonpredatory invertebrates ingesting suspended sediments, such as Ephemeroptera and Diptera larvae, exhibited higher concentrations of REEs than both filter-feeding species (i.e., mussels, polychaetes) and fish. Additionally, some amphipods displayed anomalous concentrations of gadolinium (Gd/Gd*=5.7, 2.6, and 2.0), possibly originating from anthropogenic activities near Montreal Island. While fish bioaccumulated only light REEs in their liver, multiple regression models revealed how their length and the concentration of REEs in surrounding water—in dissolved form or as free ions—influenced their concentrations. Finally, benthivorous species like <em>Moxostoma</em> spp. and <em>Ictalurus punctatus</em> accumulated more REEs compared to piscivorous <em>Sander</em> spp., reflecting differences in feeding behavior and trophic level. Overall, these findings provide insights into how REE concentrations and compositions varied among organisms, likely due to differences in environmental conditions and ecological characteristics.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"59 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125558","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs. Understanding how organisms bioaccumulate REEs requires knowledge of their environmental conditions, exposure pathways, and ecological characteristics—areas few studies have explored. In this study, we examined the fate of REEs across abiotic (water, suspended sediments, and sediments) and biotic (invertebrates and fishes) compartments in the St. Lawrence River (Canada), identifying the main drivers of their accumulation and relative composition. The results were consistent with REE biodilution along the food chain, with concentrations greater in suspended (REEs = 76.1 – 241.4 μg·g-1) and bulk sediments (REEs = 4.2 – 204.2 μg·g-1). Higher concentrations were found in fine-grained sediments, with a relative enrichment in middle REEs, likely due to REE adsorption onto Fe- or Mn-bearing minerals. Nonpredatory invertebrates ingesting suspended sediments, such as Ephemeroptera and Diptera larvae, exhibited higher concentrations of REEs than both filter-feeding species (i.e., mussels, polychaetes) and fish. Additionally, some amphipods displayed anomalous concentrations of gadolinium (Gd/Gd*=5.7, 2.6, and 2.0), possibly originating from anthropogenic activities near Montreal Island. While fish bioaccumulated only light REEs in their liver, multiple regression models revealed how their length and the concentration of REEs in surrounding water—in dissolved form or as free ions—influenced their concentrations. Finally, benthivorous species like Moxostoma spp. and Ictalurus punctatus accumulated more REEs compared to piscivorous Sander spp., reflecting differences in feeding behavior and trophic level. Overall, these findings provide insights into how REE concentrations and compositions varied among organisms, likely due to differences in environmental conditions and ecological characteristics.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.