Practical Considerations for the Optimization of In Situ Mineralization of Perfluorocarboxylic Acids and Polyfluoroalkyl Substances using Persulfate Oxidation
Emily K. Cook, Christopher I. Olivares, Yilu Sun, Fuhar Dixit, Daniel Ocasio, Shan Yi, David L. Sedlak, Lisa Alvarez-Cohen
{"title":"Practical Considerations for the Optimization of In Situ Mineralization of Perfluorocarboxylic Acids and Polyfluoroalkyl Substances using Persulfate Oxidation","authors":"Emily K. Cook, Christopher I. Olivares, Yilu Sun, Fuhar Dixit, Daniel Ocasio, Shan Yi, David L. Sedlak, Lisa Alvarez-Cohen","doi":"10.1016/j.watres.2024.123015","DOIUrl":null,"url":null,"abstract":"Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.g., persulfate, hydrogen peroxide) are injected into an aquifer to react with contaminants on site, and is competitive with alternative remediation techniques, such as pump-and-treat and ex situ treatment options. Specifically, heat-activated persulfate oxidation (HAPO) creates highly reactive sulfate radicals that under sufficiently acid conditions can mineralize perfluoroalkyl carboxylic acids (PFCAs) and many of the polyfluoroalkyl substances in AFFF. Sulfate radicals, however, can be scavenged by solutes present in groundwater, reducing the efficiency of PFCA transformation. To assess the application of HAPO, we conducted experiments under conditions typical of source zones where remediation is likely to be employed. We found that repeated treatment of aquifer solids with modest amounts of persulfate (50-300 mM) at low temperature activation (40 °C) could reduce the concentrations of precursors and PFCAs with chain lengths greater than three carbons by over 95%. Following treatment, addition of strong base (i.e., NaOH) was needed to neutralize acidity and convert dissolved metals back into less mobile forms.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"31 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123015","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.g., persulfate, hydrogen peroxide) are injected into an aquifer to react with contaminants on site, and is competitive with alternative remediation techniques, such as pump-and-treat and ex situ treatment options. Specifically, heat-activated persulfate oxidation (HAPO) creates highly reactive sulfate radicals that under sufficiently acid conditions can mineralize perfluoroalkyl carboxylic acids (PFCAs) and many of the polyfluoroalkyl substances in AFFF. Sulfate radicals, however, can be scavenged by solutes present in groundwater, reducing the efficiency of PFCA transformation. To assess the application of HAPO, we conducted experiments under conditions typical of source zones where remediation is likely to be employed. We found that repeated treatment of aquifer solids with modest amounts of persulfate (50-300 mM) at low temperature activation (40 °C) could reduce the concentrations of precursors and PFCAs with chain lengths greater than three carbons by over 95%. Following treatment, addition of strong base (i.e., NaOH) was needed to neutralize acidity and convert dissolved metals back into less mobile forms.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.