Gaoning Shi, Yaowei Wang, Kun Yang, Yuan Qiu, Hong Zhu, Xiaoqin Zeng
{"title":"A surface emphasized multi-task learning framework for surface property predictions: A case study of magnesium intermetallics","authors":"Gaoning Shi, Yaowei Wang, Kun Yang, Yuan Qiu, Hong Zhu, Xiaoqin Zeng","doi":"10.1016/j.jma.2024.12.005","DOIUrl":null,"url":null,"abstract":"Surface properties of crystals are critical in many fields, including electrochemistry and photoelectronics, the efficient prediction of which can expedite the design and optimization of catalysts, batteries, alloys etc. However, we are still far from realizing this vision due to the rarity of surface property-related databases, especially for multicomponent compounds, due to the large sample spaces and limited computing resources. In this work, we present a surface emphasized multi-task crystal graph convolutional neural network (SEM-CGCNN) to predict multiple surface properties simultaneously from crystal structures. The model is evaluated on a dataset of 3526 surface energies and work functions of binary magnesium intermetallics obtained through first-principles calculations, and obvious improvements are observed both in efficiency and accuracy over the original CGCNN model. By transferring the pre-trained model to the datasets of pure metals and other intermetallics, the fine-tuned SEM-CGCNN outperforms learning from scratch and can be further applied to other surface properties and materials systems. This study could be a paradigm for the end-to-end mapping of atomic structures to anisotropic surface properties of crystals, which provides an efficient framework to understand and screen materials with desired surface characteristics.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"41 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Surface properties of crystals are critical in many fields, including electrochemistry and photoelectronics, the efficient prediction of which can expedite the design and optimization of catalysts, batteries, alloys etc. However, we are still far from realizing this vision due to the rarity of surface property-related databases, especially for multicomponent compounds, due to the large sample spaces and limited computing resources. In this work, we present a surface emphasized multi-task crystal graph convolutional neural network (SEM-CGCNN) to predict multiple surface properties simultaneously from crystal structures. The model is evaluated on a dataset of 3526 surface energies and work functions of binary magnesium intermetallics obtained through first-principles calculations, and obvious improvements are observed both in efficiency and accuracy over the original CGCNN model. By transferring the pre-trained model to the datasets of pure metals and other intermetallics, the fine-tuned SEM-CGCNN outperforms learning from scratch and can be further applied to other surface properties and materials systems. This study could be a paradigm for the end-to-end mapping of atomic structures to anisotropic surface properties of crystals, which provides an efficient framework to understand and screen materials with desired surface characteristics.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.