Lu Zhang, Qian Yuan, Jun Tan, Quan Dong, Hao Lv, Fanglei Wang, Aitao Tang, Jürgen Eckert, Fusheng Pan
{"title":"Enhancing the room-temperature plasticity of magnesium alloys: Mechanisms and strategies","authors":"Lu Zhang, Qian Yuan, Jun Tan, Quan Dong, Hao Lv, Fanglei Wang, Aitao Tang, Jürgen Eckert, Fusheng Pan","doi":"10.1016/j.jma.2024.12.008","DOIUrl":null,"url":null,"abstract":"The room-temperature plasticity of magnesium and its alloys is limited primarily by their hexagonal close-packed (HCP) crystal structure, which restricts the number of active slip systems available at room temperature. This limitation hinders their broader application in various industries. Consequently, enhancing the room-temperature plasticity of magnesium alloys is essential for expanding their usage. This review provides a comprehensive overview of the underlying mechanisms and strategies for enhancing room-temperature plasticity in magnesium alloys. The first section emphasizes the importance of improving plasticity in these materials. The second section uses bibliometric analysis to identify key research trends and emerging hotspots in the field. The third section explores the deformation mechanisms and factors that influence room-temperature plasticity. The fourth section discusses various methods for enhancing plasticity. The fifth section focuses on achieving a balance between strength and plasticity. Finally, the review concludes with insights into future prospects and challenges, offering guidance for the development of high-plasticity magnesium alloys and serving as a resource for both research and industrial applications.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The room-temperature plasticity of magnesium and its alloys is limited primarily by their hexagonal close-packed (HCP) crystal structure, which restricts the number of active slip systems available at room temperature. This limitation hinders their broader application in various industries. Consequently, enhancing the room-temperature plasticity of magnesium alloys is essential for expanding their usage. This review provides a comprehensive overview of the underlying mechanisms and strategies for enhancing room-temperature plasticity in magnesium alloys. The first section emphasizes the importance of improving plasticity in these materials. The second section uses bibliometric analysis to identify key research trends and emerging hotspots in the field. The third section explores the deformation mechanisms and factors that influence room-temperature plasticity. The fourth section discusses various methods for enhancing plasticity. The fifth section focuses on achieving a balance between strength and plasticity. Finally, the review concludes with insights into future prospects and challenges, offering guidance for the development of high-plasticity magnesium alloys and serving as a resource for both research and industrial applications.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.