{"title":"Fabrication and characterization of magnesium-based nanocomposites reinforced with Baghdadite and carbon nanotubes for orthopaedical applications","authors":"Mojtaba Ansari, Shiva Mahdavikia, Hossein Eslami, Mozhdeh Saghalaini, Hamid Taghipour, Fatemeh Zare, Shahin Shirani, Mohammad Hossein Alizadeh Roknabadi","doi":"10.1016/j.jma.2024.12.004","DOIUrl":null,"url":null,"abstract":"This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application. BAG powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs matrix. Mg/1.5 wt.% CNT composites were reinforced with BAG at weight fractions of 0.5, 1.0, and 1.5 wt.% using spark plasma sintering at 450 °C and 50 MPa after homogenization via ball milling. The cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal cells. The proliferation and attachment of MG-63 cells were assessed and visualized using the methylthiazol tetrazolium (MTT) assay and SEM, while AD-MSC differentiation was measured using alkaline phosphatase activity assays. Histograms were also generated to visualize the diameter distributions of particles in SEM images using image processing techniques. The Mg/CNTs/0.5 wt.% BAG composite demonstrated optimal mechanical properties, with compressive strength, yield strength, and fracture strain of 259.75 MPa, 180.25 MPa, and 31.65 %, respectively. Machine learning models, including CNN, LSTM, and GRU, were employed to predict stress-strain relationships across varying BAG amounts, aiming to accurately model these curves without requiring extensive physical experiments. As shown by contact angle measurements, enhanced hydrophilicity promoted better cell adhesion and proliferation. Furthermore, corrosion resistance improved with a higher BAG content. This study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.% offer promising biodegradable implant materials for orthopedic applications, featuring adequate load-bearing capacity and improved corrosion resistance.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"23 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application. BAG powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs matrix. Mg/1.5 wt.% CNT composites were reinforced with BAG at weight fractions of 0.5, 1.0, and 1.5 wt.% using spark plasma sintering at 450 °C and 50 MPa after homogenization via ball milling. The cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal cells. The proliferation and attachment of MG-63 cells were assessed and visualized using the methylthiazol tetrazolium (MTT) assay and SEM, while AD-MSC differentiation was measured using alkaline phosphatase activity assays. Histograms were also generated to visualize the diameter distributions of particles in SEM images using image processing techniques. The Mg/CNTs/0.5 wt.% BAG composite demonstrated optimal mechanical properties, with compressive strength, yield strength, and fracture strain of 259.75 MPa, 180.25 MPa, and 31.65 %, respectively. Machine learning models, including CNN, LSTM, and GRU, were employed to predict stress-strain relationships across varying BAG amounts, aiming to accurately model these curves without requiring extensive physical experiments. As shown by contact angle measurements, enhanced hydrophilicity promoted better cell adhesion and proliferation. Furthermore, corrosion resistance improved with a higher BAG content. This study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.% offer promising biodegradable implant materials for orthopedic applications, featuring adequate load-bearing capacity and improved corrosion resistance.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.