An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use.

Michael J Edel, Helena Sarret Casellas, Jordi Requena Osete, Núria Nieto-Nicolau, Francisco Arnalich-Montiel, María P De Miguel, Samuel McLenachan, Danial Roshandel, Ricardo P Casaroli-Marano, Belén Alvarez-Palomo
{"title":"An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use.","authors":"Michael J Edel, Helena Sarret Casellas, Jordi Requena Osete, Núria Nieto-Nicolau, Francisco Arnalich-Montiel, María P De Miguel, Samuel McLenachan, Danial Roshandel, Ricardo P Casaroli-Marano, Belén Alvarez-Palomo","doi":"10.1089/scd.2024.0172","DOIUrl":null,"url":null,"abstract":"<p><p>In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source. A synthetic mRNA-based protocol to produce human iPSC from bone marrow mesenchymal stem cells has been defined. The results demonstrate a standardizable method that can be easily adaptable for clinical-grade production standards, produce high-purity LSC-like cells in a relatively rapid timeframe of 12 days, and can be successfully seeded on amniotic membrane or a biodegradable fibrin gel for transplantation. In vivo data demonstrated it is feasible to transplant the iPSC-LSC fibrin patch. In conclusion, an efficient method has been developed to produce patient-specific LSC and seed them on a scaffold fibrin gel for future treatment of LSC-deficiency disease.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source. A synthetic mRNA-based protocol to produce human iPSC from bone marrow mesenchymal stem cells has been defined. The results demonstrate a standardizable method that can be easily adaptable for clinical-grade production standards, produce high-purity LSC-like cells in a relatively rapid timeframe of 12 days, and can be successfully seeded on amniotic membrane or a biodegradable fibrin gel for transplantation. In vivo data demonstrated it is feasible to transplant the iPSC-LSC fibrin patch. In conclusion, an efficient method has been developed to produce patient-specific LSC and seed them on a scaffold fibrin gel for future treatment of LSC-deficiency disease.

制备人类诱导多能干细胞衍生瓣膜干细胞的优化方法,易于临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信