Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders.

Shizhu Gao, Xin Li, Bing Han
{"title":"Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders.","authors":"Shizhu Gao, Xin Li, Bing Han","doi":"10.1080/17425247.2024.2444364","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment.</p><p><strong>Areas covered: </strong>This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024.</p><p><strong>Expert opinion: </strong>Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2444364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment.

Areas covered: This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024.

Expert opinion: Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.

基于细菌和细菌衍生物的药物传递系统:治疗中枢神经系统疾病的新方法。
细菌及其衍生物由于其独特的趋化性、生物相容性和靶向能力,显示出作为药物传递系统的巨大潜力。在中枢神经系统疾病的治疗中,细菌载体可以跨越血脑屏障(BBB)并精确地传递药物,克服了传统方法的局限性。基因工程、合成生物学和纳米技术的进步已经将这些系统转变为个性化中枢神经系统治疗的多功能平台。涵盖领域:本文综述了细菌载体治疗缺血性脑损伤、神经退行性疾病和胶质瘤的最新研究进展。细菌通过主动靶向、内吞作用、细胞旁转运和鼻子到大脑的精确药物传递途径有效地穿过血脑屏障。各种细菌给药系统,如omv和细菌鬼,探索其设计和应用。在b谷歌Scholar中检索了截止到2024年12月的数据库。专家意见:细菌给药的未来发展将依靠人工智能驱动的设计和高通量工程,提高治疗精度。个性化医疗将进一步优化个体患者的细菌载体,但必须解决生物安全性、免疫排斥和可扩展性等挑战。随着多模式诊断和治疗策略的发展,细菌载体有望在中枢神经系统疾病的治疗中发挥核心作用,提供新的精准医学解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信