Enhanced oxidation of 2,4-dichlorophenol in ferrate(VI) and copper oxide system via the formation of trivalent copper ion and singlet oxygen.

Guihai Zhang, Yidan Luo, Jiancheng Cheng, Xinlong Hua, Guizhou Xu, Mengqin Yu, Zhu Wang, Yalan Zhang, Wei Liu, Yingxin Du, Xianchuan Xie, Daishe Wu, Zugen Liu
{"title":"Enhanced oxidation of 2,4-dichlorophenol in ferrate(VI) and copper oxide system via the formation of trivalent copper ion and singlet oxygen.","authors":"Guihai Zhang, Yidan Luo, Jiancheng Cheng, Xinlong Hua, Guizhou Xu, Mengqin Yu, Zhu Wang, Yalan Zhang, Wei Liu, Yingxin Du, Xianchuan Xie, Daishe Wu, Zugen Liu","doi":"10.1016/j.chemosphere.2024.143970","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the activity of ferrate is one of the main research focus in environmental field. Here, we demonstrate a novel copper oxide (CuO)-Ferrate(VI) system wherein CuO plays a key role in activating Fe(VI) to effectively eliminate phenolic contaminants. The dominant reactive species were determined to be Cu(III) and <sup>1</sup>O<sub>2</sub>, confirmed by in situ Raman spectroscopy, quenching experiments, and EPR tests. The results indicated that Fe(VI) preferentially reacts with CuO, forming Cu(III) and <sup>1</sup>O<sub>2</sub>. Subsequently, deprotonated 2,4-dichlorophenol (2,4-DCP) was adsorbed with Cu(III) via electrostatic adsorption and was directly oxidized by Cu(III). Co-existing ion experiments demonstrated the strong stability of the CuO/Fe(VI) system against environmental background substances, maintaining effective removal efficiency over multiple cycles. In summary, this study highlights the potential advantages of CuO-assisted Fe(VI) activation, offering a new route for the efficient utilization of Fe(VI) in eliminating phenolic pollutants.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143970"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the activity of ferrate is one of the main research focus in environmental field. Here, we demonstrate a novel copper oxide (CuO)-Ferrate(VI) system wherein CuO plays a key role in activating Fe(VI) to effectively eliminate phenolic contaminants. The dominant reactive species were determined to be Cu(III) and 1O2, confirmed by in situ Raman spectroscopy, quenching experiments, and EPR tests. The results indicated that Fe(VI) preferentially reacts with CuO, forming Cu(III) and 1O2. Subsequently, deprotonated 2,4-dichlorophenol (2,4-DCP) was adsorbed with Cu(III) via electrostatic adsorption and was directly oxidized by Cu(III). Co-existing ion experiments demonstrated the strong stability of the CuO/Fe(VI) system against environmental background substances, maintaining effective removal efficiency over multiple cycles. In summary, this study highlights the potential advantages of CuO-assisted Fe(VI) activation, offering a new route for the efficient utilization of Fe(VI) in eliminating phenolic pollutants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信