Overexpressed Palladin Rescues Enteropathogenic E. coli (EPEC) Pedestal Lengths in ArpC2 Depleted Cells.

Kaitlin M Bruzzini, S Tara Mann, Julian A Guttman
{"title":"Overexpressed Palladin Rescues Enteropathogenic E. coli (EPEC) Pedestal Lengths in ArpC2 Depleted Cells.","authors":"Kaitlin M Bruzzini, S Tara Mann, Julian A Guttman","doi":"10.1002/cm.21974","DOIUrl":null,"url":null,"abstract":"<p><p>Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called \"pedestals.\" Palladin is an actin-associated protein that cross-links and stabilizes actin filaments. This protein also acts as a scaffolding protein for other actin-binding proteins. Here, we examine the role of Palladin during EPEC infections and show that Palladin is co-opted by EPEC. Depletion of Palladin resulted in shorter pedestals, and when Palladin containing mutations in either its actin- or VASP-binding domains were overexpressed in cells, pedestals decreased in length. Importantly, we show that the overexpression of Palladin in ArpC2<sup>-/-</sup> (Arp2/3 complex-depleted) cells rescued pedestal length. Together, our results demonstrate that Palladin has the ability to rescue pedestal length during EPEC infections when the function of the Arp2/3 complex is diminished.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called "pedestals." Palladin is an actin-associated protein that cross-links and stabilizes actin filaments. This protein also acts as a scaffolding protein for other actin-binding proteins. Here, we examine the role of Palladin during EPEC infections and show that Palladin is co-opted by EPEC. Depletion of Palladin resulted in shorter pedestals, and when Palladin containing mutations in either its actin- or VASP-binding domains were overexpressed in cells, pedestals decreased in length. Importantly, we show that the overexpression of Palladin in ArpC2-/- (Arp2/3 complex-depleted) cells rescued pedestal length. Together, our results demonstrate that Palladin has the ability to rescue pedestal length during EPEC infections when the function of the Arp2/3 complex is diminished.

在ArpC2缺失的细胞中,过表达的Palladin可挽救肠致病性大肠杆菌(EPEC)基座长度。
肠致病性大肠杆菌(EPEC)引起腹泻病。一旦被摄入,这些细胞外病原体附着在宿主的肠上皮细胞上,使局部微绒毛塌陷,并在附着细菌下方的宿主细胞内产生富含肌动蛋白的结构,称为“基座”。帕拉丁是一种肌动蛋白相关蛋白,它交联并稳定肌动蛋白丝。这种蛋白也作为其他肌动蛋白结合蛋白的支架蛋白。在这里,我们研究了帕拉丁在EPEC感染中的作用,并表明帕拉丁被EPEC所吸收。Palladin的缺失导致基座变短,当含有肌动蛋白或vasp结合域突变的Palladin在细胞中过度表达时,基座长度减少。重要的是,我们发现在ArpC2-/- (Arp2/3复合物耗尽)细胞中过表达Palladin挽救了基座长度。总之,我们的研究结果表明,当Arp2/3复合物的功能减弱时,在EPEC感染期间,Palladin具有挽救基座长度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信