{"title":"Overexpressed Palladin Rescues Enteropathogenic E. coli (EPEC) Pedestal Lengths in ArpC2 Depleted Cells.","authors":"Kaitlin M Bruzzini, S Tara Mann, Julian A Guttman","doi":"10.1002/cm.21974","DOIUrl":null,"url":null,"abstract":"<p><p>Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called \"pedestals.\" Palladin is an actin-associated protein that cross-links and stabilizes actin filaments. This protein also acts as a scaffolding protein for other actin-binding proteins. Here, we examine the role of Palladin during EPEC infections and show that Palladin is co-opted by EPEC. Depletion of Palladin resulted in shorter pedestals, and when Palladin containing mutations in either its actin- or VASP-binding domains were overexpressed in cells, pedestals decreased in length. Importantly, we show that the overexpression of Palladin in ArpC2<sup>-/-</sup> (Arp2/3 complex-depleted) cells rescued pedestal length. Together, our results demonstrate that Palladin has the ability to rescue pedestal length during EPEC infections when the function of the Arp2/3 complex is diminished.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called "pedestals." Palladin is an actin-associated protein that cross-links and stabilizes actin filaments. This protein also acts as a scaffolding protein for other actin-binding proteins. Here, we examine the role of Palladin during EPEC infections and show that Palladin is co-opted by EPEC. Depletion of Palladin resulted in shorter pedestals, and when Palladin containing mutations in either its actin- or VASP-binding domains were overexpressed in cells, pedestals decreased in length. Importantly, we show that the overexpression of Palladin in ArpC2-/- (Arp2/3 complex-depleted) cells rescued pedestal length. Together, our results demonstrate that Palladin has the ability to rescue pedestal length during EPEC infections when the function of the Arp2/3 complex is diminished.