Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well?

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Tobin R Sosnick, Michael C Baxa
{"title":"Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well?","authors":"Tobin R Sosnick, Michael C Baxa","doi":"10.1146/annurev-biophys-080124-123012","DOIUrl":null,"url":null,"abstract":"<p><p>A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-080124-123012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.

崩溃与蛋白质折叠:我们是否应该对生物热力学如此有效感到惊讶?
一个完整的蛋白质功能和动力学的理解需要多种热力学状态的表征,包括变性态系综(DSE)。尽管DSE中的残余结构(以及部分折叠态)与许多生物学背景相关,但在这里,我们感兴趣的是这种结构如何影响蛋白质热力学。我们根据新的发展来研究与链崩溃相关的问题,重点关注在不同条件下DSE属性差异引起的潜在并发症。尽管DSE的坍塌程度和结构存在一些差异,但两种标准方法(量热法和化学变性法)以及氢-氘交换法之间的稳定性测量结果非常一致。这种鲁棒性部分是由于在不同扰动下获得的dse是热力学等效的,因此能够作为一个共同的参考状态。对DSE性质的研究表明,它是一个高度膨胀的系综,具有极少量的稳定氢键结构。这两个特征可能是在广泛和成功的应用热力学蛋白质折叠的关键。我们的综述最后讨论了这些发现对折叠机制和途径的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信