Output sampling synchronization and state estimation in flux-charge domain memristive neural networks with leakage and time-varying delays.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
G Soundararajan, R Suvetha, Minvydas Ragulskis, P Prakash
{"title":"Output sampling synchronization and state estimation in flux-charge domain memristive neural networks with leakage and time-varying delays.","authors":"G Soundararajan, R Suvetha, Minvydas Ragulskis, P Prakash","doi":"10.1016/j.neunet.2024.107018","DOIUrl":null,"url":null,"abstract":"<p><p>This paper theoretically explores the coexistence of synchronization and state estimation analysis through output sampling measures for a class of memristive neural networks operating within the flux-charge domain. These networks are subject to constant delayed responses in self-feedback loops and time-varying delayed responses incorporated into the activation functions. A contemporary output sampling controller is designed to discretize system dynamics based on available output measurements, which enhances control performance by minimizing update frequency, thus overcoming network bandwidth limitations and addressing network synchronization and state vector estimation. By utilizing differential inclusion mapping to capture weights from discontinuous memristive switching actions and an input-delay approach to bound nonuniform sampling intervals, we present linear matrix inequality-based sufficient conditions for synchronization and vector estimation criteria under the Lyapunov-Krasovskii functional framework and relaxed integral inequality. Finally, by utilizing the preset experimental data-set, we visually verify the adaptability of the proposed theoretical findings concerning synchronization, anti-synchronization, and vector state estimation of delayed memristive neural networks operating in the flux-charge domain. Furthermore, numerical validation through simulation demonstrates the impact of leakage delay and output measurement sampling by comparative analysis with scenarios lacking leakage and sampling measurements.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107018"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107018","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper theoretically explores the coexistence of synchronization and state estimation analysis through output sampling measures for a class of memristive neural networks operating within the flux-charge domain. These networks are subject to constant delayed responses in self-feedback loops and time-varying delayed responses incorporated into the activation functions. A contemporary output sampling controller is designed to discretize system dynamics based on available output measurements, which enhances control performance by minimizing update frequency, thus overcoming network bandwidth limitations and addressing network synchronization and state vector estimation. By utilizing differential inclusion mapping to capture weights from discontinuous memristive switching actions and an input-delay approach to bound nonuniform sampling intervals, we present linear matrix inequality-based sufficient conditions for synchronization and vector estimation criteria under the Lyapunov-Krasovskii functional framework and relaxed integral inequality. Finally, by utilizing the preset experimental data-set, we visually verify the adaptability of the proposed theoretical findings concerning synchronization, anti-synchronization, and vector state estimation of delayed memristive neural networks operating in the flux-charge domain. Furthermore, numerical validation through simulation demonstrates the impact of leakage delay and output measurement sampling by comparative analysis with scenarios lacking leakage and sampling measurements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信