Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI:10.34133/research.0540
Lubing Liu, Huiying Liu, Xiaoya Lu, Zhengshuai Yin, Wei Zhang, Jing Ye, Yingying Xu, Zhenzhen Weng, Jun Luo, Xiaolei Wang
{"title":"Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion.","authors":"Lubing Liu, Huiying Liu, Xiaoya Lu, Zhengshuai Yin, Wei Zhang, Jing Ye, Yingying Xu, Zhenzhen Weng, Jun Luo, Xiaolei Wang","doi":"10.34133/research.0540","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components. The nanocomposite incorporates internal hydrogen-carrying nanozymes, which effectively scavenge multiple reactive oxygen species (ROS) and synergistically engage the autophagy-lysosome pathway to accelerate endogenous ROS degradation in macrophages. This mechanism disrupts the vicious cycle of autophagic dysfunction-ROS accumulation-macrophage inflammation. In addition, external metal-organic frameworks release zinc ions (Zn<sup>2+</sup>) in response to the acidic osteoporotic environment, thereby promoting osteogenesis. In a murine model of osteoporosis, intravenous administration of A-Z@Pd(H) leads to preferential accumulation in the femur, thereby remodeling the osteoporotic microenvironment through immune regulation, osteogenesis promotion, and osteoclast inhibition. These findings suggest that this system composed of hydrogen therapy and ion therapy may be a promising candidate for bone-targeted comprehensive therapy in osteoporosis.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0540"},"PeriodicalIF":11.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0540","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components. The nanocomposite incorporates internal hydrogen-carrying nanozymes, which effectively scavenge multiple reactive oxygen species (ROS) and synergistically engage the autophagy-lysosome pathway to accelerate endogenous ROS degradation in macrophages. This mechanism disrupts the vicious cycle of autophagic dysfunction-ROS accumulation-macrophage inflammation. In addition, external metal-organic frameworks release zinc ions (Zn2+) in response to the acidic osteoporotic environment, thereby promoting osteogenesis. In a murine model of osteoporosis, intravenous administration of A-Z@Pd(H) leads to preferential accumulation in the femur, thereby remodeling the osteoporotic microenvironment through immune regulation, osteogenesis promotion, and osteoclast inhibition. These findings suggest that this system composed of hydrogen therapy and ion therapy may be a promising candidate for bone-targeted comprehensive therapy in osteoporosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信