Mycoremediation of heavy metals by Curvularia lunata from Buckingham Canal, Neelankarai, Chennai.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
S Sugitha, P Vishnu Priya, Tadela Kavya Kanishka, A Duraimurugan, M Suganthi, K Ashok Kumar, M Jayanthi, R Durgadevi, C Ramprasath, G Abirami
{"title":"Mycoremediation of heavy metals by Curvularia lunata from Buckingham Canal, Neelankarai, Chennai.","authors":"S Sugitha, P Vishnu Priya, Tadela Kavya Kanishka, A Duraimurugan, M Suganthi, K Ashok Kumar, M Jayanthi, R Durgadevi, C Ramprasath, G Abirami","doi":"10.1007/s11274-024-04218-1","DOIUrl":null,"url":null,"abstract":"<p><p>The spread and mobilization of toxic heavy metals in the environment have increased to a harmful level in recent years as a result of the fast industrialization occurring all over the world to meet the demands of a rising population. This research aims to analyze and evaluate the mycoremediation abilities of fungal strains that exhibit tolerance to heavy metals, gathered from water samples at Buckingham Canal, Neelankarai, Chennai. Water samples were examined for heavy metal analysis, and the highest toxic heavy metals, Zn, Pb, Mn, Cu, and Cr, were recorded. Three fungal strains were isolated and named EBPL1000, EBPL1001, and EBPL1002 were selected by primary screening (100 ppm) for further studies. Out of three fungal isolates, EBPL1000 grew in all five heavy metal concentrations and showed 2100 ppm as the highest Maximum Tolerance Concentration toward Lead, 2000 ppm tolerance in Zinc and Manganese, 1700 ppm in Chromium, and 1500 ppm in copper, respectively. The fungal isolate EBPL1000 was identified as Curvularia lunata with 100% percentage identity and query coverage. The Biosorption result reveals that lead is the highest biosorbed heavy metal with 79.99% at 100 ppm concentration while copper is the lowest biosorbed with 24.11% heavy metal at 500 ppm concentration. The uptake of Manganese by Curvularia lunata biomass was the highest (5.64 mg/g) of all heavy metal's uptake at 100 ppm concentration. The lowest uptake of heavy metals was copper (0.43 mg/g) at 500 ppm concentration, and the growth profile study under heavy metals stress conditions shows the order of Pb > Mn > Zn > Cr > Cu at 60 h of time intervals at 100 ppm concentration. In addition to the research, FTIR analysis and Molecular Docking studies provide credence to the idea that Curvularia lunata has high biosorption potential and uptake or removal of toxic heavy metals at low cost and in an eco-friendly way from the contaminated environment.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 1","pages":"1"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04218-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spread and mobilization of toxic heavy metals in the environment have increased to a harmful level in recent years as a result of the fast industrialization occurring all over the world to meet the demands of a rising population. This research aims to analyze and evaluate the mycoremediation abilities of fungal strains that exhibit tolerance to heavy metals, gathered from water samples at Buckingham Canal, Neelankarai, Chennai. Water samples were examined for heavy metal analysis, and the highest toxic heavy metals, Zn, Pb, Mn, Cu, and Cr, were recorded. Three fungal strains were isolated and named EBPL1000, EBPL1001, and EBPL1002 were selected by primary screening (100 ppm) for further studies. Out of three fungal isolates, EBPL1000 grew in all five heavy metal concentrations and showed 2100 ppm as the highest Maximum Tolerance Concentration toward Lead, 2000 ppm tolerance in Zinc and Manganese, 1700 ppm in Chromium, and 1500 ppm in copper, respectively. The fungal isolate EBPL1000 was identified as Curvularia lunata with 100% percentage identity and query coverage. The Biosorption result reveals that lead is the highest biosorbed heavy metal with 79.99% at 100 ppm concentration while copper is the lowest biosorbed with 24.11% heavy metal at 500 ppm concentration. The uptake of Manganese by Curvularia lunata biomass was the highest (5.64 mg/g) of all heavy metal's uptake at 100 ppm concentration. The lowest uptake of heavy metals was copper (0.43 mg/g) at 500 ppm concentration, and the growth profile study under heavy metals stress conditions shows the order of Pb > Mn > Zn > Cr > Cu at 60 h of time intervals at 100 ppm concentration. In addition to the research, FTIR analysis and Molecular Docking studies provide credence to the idea that Curvularia lunata has high biosorption potential and uptake or removal of toxic heavy metals at low cost and in an eco-friendly way from the contaminated environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信