{"title":"Species- and organ-specific contribution of peroxisomal cinnamate:CoA ligases to benzoic and salicylic acid biosynthesis.","authors":"Yukang Wang, Huiying Miao, Jiehua Qiu, Menghui Liu, Gaochen Jin, Wenxuan Zhang, Shuyan Song, Pengxiang Fan, Xiufang Xin, Jianping Hu, Ran Li, Ronghui Pan","doi":"10.1093/plcell/koae329","DOIUrl":null,"url":null,"abstract":"<p><p>Salicylic acid (SA) is a prominent defense hormone whose basal level, organ-specific accumulation, and physiological role vary widely among plant species. Of the two known pathways of plant SA biosynthesis, the phenylalanine ammonia lyase (PAL) pathway is more ancient and universal but its biosynthetic and physiological roles in diverse plant species remain unclear. Studies in which the PAL pathway is specifically or completely inhibited, as well as a direct comparison of diverse species and different organs within the same species, are needed. To this end, we analyzed the PAL pathway in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), two distantly related model plants whose basal SA levels and distributions differ tremendously at the organism and tissue levels. Based on our recent identification of the rice peroxisomal cinnamate:CoA ligases (CNLs), we identified two peroxisomal CNLs from Arabidopsis and showed CNL as the most functionally specific enzyme among the known enzymes of the PAL pathway. We then revealed the species- and organ-specific contribution of the PAL pathway to benzoic and salicylic acid biosynthesis and clarified its physiological importance in rice and Arabidopsis. Our findings highlight the necessity to consider species and organ types in future SA-related studies and may help to breed new disease-resistant crops.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae329","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salicylic acid (SA) is a prominent defense hormone whose basal level, organ-specific accumulation, and physiological role vary widely among plant species. Of the two known pathways of plant SA biosynthesis, the phenylalanine ammonia lyase (PAL) pathway is more ancient and universal but its biosynthetic and physiological roles in diverse plant species remain unclear. Studies in which the PAL pathway is specifically or completely inhibited, as well as a direct comparison of diverse species and different organs within the same species, are needed. To this end, we analyzed the PAL pathway in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), two distantly related model plants whose basal SA levels and distributions differ tremendously at the organism and tissue levels. Based on our recent identification of the rice peroxisomal cinnamate:CoA ligases (CNLs), we identified two peroxisomal CNLs from Arabidopsis and showed CNL as the most functionally specific enzyme among the known enzymes of the PAL pathway. We then revealed the species- and organ-specific contribution of the PAL pathway to benzoic and salicylic acid biosynthesis and clarified its physiological importance in rice and Arabidopsis. Our findings highlight the necessity to consider species and organ types in future SA-related studies and may help to breed new disease-resistant crops.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.