Rigorous hydrodynamics from linear Boltzmann equations and viscosity-capillarity balance.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Florian Kogelbauer, Ilya Karlin
{"title":"Rigorous hydrodynamics from linear Boltzmann equations and viscosity-capillarity balance.","authors":"Florian Kogelbauer, Ilya Karlin","doi":"10.1103/PhysRevE.110.055105","DOIUrl":null,"url":null,"abstract":"<p><p>Exact closure for hydrodynamic variables is rigorously derived from the linear Boltzmann kinetic equation. Our approach, based on spectral theory, structural properties of eigenvectors, and the theory of slow manifolds, allows us to define a unique, optimal reduction in phase space close to equilibrium. The hydrodynamically constrained system induces a modification of entropy that ensures pure dissipation on the hydrodynamic manifold, which is interpreted as a nonlocal variant of Korteweg's theory of viscosity-capillarity balance. The rigorous hydrodynamic equations are exemplified on the Knudsen minimum paradox in a channel flow.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055105"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.055105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Exact closure for hydrodynamic variables is rigorously derived from the linear Boltzmann kinetic equation. Our approach, based on spectral theory, structural properties of eigenvectors, and the theory of slow manifolds, allows us to define a unique, optimal reduction in phase space close to equilibrium. The hydrodynamically constrained system induces a modification of entropy that ensures pure dissipation on the hydrodynamic manifold, which is interpreted as a nonlocal variant of Korteweg's theory of viscosity-capillarity balance. The rigorous hydrodynamic equations are exemplified on the Knudsen minimum paradox in a channel flow.

从线性玻尔兹曼方程和粘度-气相平衡出发的严格流体力学。
从线性玻尔兹曼动力学方程严格推导出流体动力变量的精确闭包。我们的方法,基于谱理论,特征向量的结构性质,以及慢流形理论,允许我们在接近平衡的相空间中定义一个独特的,最优的减少。水动力约束系统诱导熵的修正,以确保在水动力流形上的纯粹耗散,这被解释为Korteweg的黏性-毛细平衡理论的非局部变体。用Knudsen最小悖论举例说明了通道流的严格水动力方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信