{"title":"Complete positivity and thermal relaxation in quadratic quantum master equations.","authors":"F Nicacio, T Koide","doi":"10.1103/PhysRevE.110.054116","DOIUrl":null,"url":null,"abstract":"<p><p>The ultimate goal of this paper is to develop a systematic method for deriving quantum master equations that satisfy the requirements of a completely positive and trace-preserving (CPTP) map, further describing thermal relaxation processes. In this paper, we assume that the quantum master equation is obtained through the canonical quantization of the generalized Brownian motion proposed in our recent paper [T. Koide and F. Nicacio, Phys. Lett. A 494, 129277 (2024)0375-960110.1016/j.physleta.2023.129277]. At least classically, this dynamics describes the thermal relaxation process regardless of the choice of the system Hamiltonian. The remaining task is to identify the parameters ensuring that the quantum master equation meets complete positivity. We limit our discussion to many-body quadratic Hamiltonians and establish a CPTP criterion for our quantum master equation. This criterion is useful for applying our quantum master equation to models with interaction such as a network model, which has been used to investigate how quantum effects modify heat conduction.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054116"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The ultimate goal of this paper is to develop a systematic method for deriving quantum master equations that satisfy the requirements of a completely positive and trace-preserving (CPTP) map, further describing thermal relaxation processes. In this paper, we assume that the quantum master equation is obtained through the canonical quantization of the generalized Brownian motion proposed in our recent paper [T. Koide and F. Nicacio, Phys. Lett. A 494, 129277 (2024)0375-960110.1016/j.physleta.2023.129277]. At least classically, this dynamics describes the thermal relaxation process regardless of the choice of the system Hamiltonian. The remaining task is to identify the parameters ensuring that the quantum master equation meets complete positivity. We limit our discussion to many-body quadratic Hamiltonians and establish a CPTP criterion for our quantum master equation. This criterion is useful for applying our quantum master equation to models with interaction such as a network model, which has been used to investigate how quantum effects modify heat conduction.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.