Evidence of dual energy transfer driven by magnetic reconnection at subion scales.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Raffaello Foldes, Silvio Sergio Cerri, Raffaele Marino, Enrico Camporeale
{"title":"Evidence of dual energy transfer driven by magnetic reconnection at subion scales.","authors":"Raffaello Foldes, Silvio Sergio Cerri, Raffaele Marino, Enrico Camporeale","doi":"10.1103/PhysRevE.110.055207","DOIUrl":null,"url":null,"abstract":"<p><p>The properties of energy transfer in the kinetic range of plasma turbulence have fundamental implications on the turbulent heating of space and astrophysical plasmas. It was suggested that magnetic reconnection may be responsible for driving the subion scale cascade, and that this process would be characterized by a direct energy transfer toward even smaller scales (until dissipation), and a simultaneous inverse transfer of energy toward larger scales, until the ion break. Here we employ the space-filter technique on high-resolution 2D3V hybrid-Vlasov simulations of continuously driven turbulence providing quantitative evidence that magnetic reconnection is indeed able to trigger a dual energy transfer originating at subion scales.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055207"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.055207","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of energy transfer in the kinetic range of plasma turbulence have fundamental implications on the turbulent heating of space and astrophysical plasmas. It was suggested that magnetic reconnection may be responsible for driving the subion scale cascade, and that this process would be characterized by a direct energy transfer toward even smaller scales (until dissipation), and a simultaneous inverse transfer of energy toward larger scales, until the ion break. Here we employ the space-filter technique on high-resolution 2D3V hybrid-Vlasov simulations of continuously driven turbulence providing quantitative evidence that magnetic reconnection is indeed able to trigger a dual energy transfer originating at subion scales.

亚尺度磁重联驱动的双重能量转移证据。
等离子体湍流动力学范围内的能量传递特性对空间和天体物理等离子体的湍流加热具有重要意义。这表明,磁重联可能是驱动亚尺度级联的原因,并且这一过程的特征是能量向更小尺度的直接转移(直到耗散),同时能量向更大尺度的反向转移,直到离子断裂。在这里,我们将空间滤波技术应用于连续驱动湍流的高分辨率2D3V混合vlasov模拟,提供了定量证据,证明磁重联确实能够触发亚尺度上的双重能量转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信