Regina Rusch, Oleksandr Chepizhko, Thomas Franosch
{"title":"Intermediate scattering function of a gravitactic circle swimmer.","authors":"Regina Rusch, Oleksandr Chepizhko, Thomas Franosch","doi":"10.1103/PhysRevE.110.054606","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze gravitaxis of a Brownian circle swimmer by deriving and analytically characterizing the experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-Planck equation, we use a spectral-theory approach, finding formal expressions in terms of eigenfunctions and eigenvalues of the overdamped-noisy-driven pendulum problem. We further perform a Taylor series of the ISF in the wavevector to extract the cumulants up to the fourth order. We focus on the skewness and kurtosis analyzed for four observation directions in the 2D plane. Validating our findings involves conducting Langevin-dynamics simulations and interpreting the results using a harmonic approximation. The skewness and kurtosis are amplified as the orienting torque approaches the intrinsic angular drift of the circle swimmer from above, highlighting deviations from Gaussian behavior. Transforming the ISF to the comoving frame, a measurable quantity, reveals gravitactic effects and diverse behaviors spanning from diffusive motion at low wavenumbers to circular motion at intermediate wavenumbers and directed motion at higher wavenumbers.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054606"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054606","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze gravitaxis of a Brownian circle swimmer by deriving and analytically characterizing the experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-Planck equation, we use a spectral-theory approach, finding formal expressions in terms of eigenfunctions and eigenvalues of the overdamped-noisy-driven pendulum problem. We further perform a Taylor series of the ISF in the wavevector to extract the cumulants up to the fourth order. We focus on the skewness and kurtosis analyzed for four observation directions in the 2D plane. Validating our findings involves conducting Langevin-dynamics simulations and interpreting the results using a harmonic approximation. The skewness and kurtosis are amplified as the orienting torque approaches the intrinsic angular drift of the circle swimmer from above, highlighting deviations from Gaussian behavior. Transforming the ISF to the comoving frame, a measurable quantity, reveals gravitactic effects and diverse behaviors spanning from diffusive motion at low wavenumbers to circular motion at intermediate wavenumbers and directed motion at higher wavenumbers.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.