Contrasting thermodynamic and hydrodynamic entropy.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Mahendra K Verma, Rodion Stepanov, Alexandre Delache
{"title":"Contrasting thermodynamic and hydrodynamic entropy.","authors":"Mahendra K Verma, Rodion Stepanov, Alexandre Delache","doi":"10.1103/PhysRevE.110.055106","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively. In this paper, we also discuss the hydrodynamic entropy for the time-dependent Ginzburg-Landau equation and Ising spins.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055106"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.055106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively. In this paper, we also discuss the hydrodynamic entropy for the time-dependent Ginzburg-Landau equation and Ising spins.

本文利用流体动力熵对欧拉湍流和流体动力湍流中的多尺度无序进行量化。这些例子说明,流体动力熵并不广泛,因为它与系统大小不成正比。因此,我们不能将分别测量宏观和微观尺度无序的流体动力熵和热力学熵相加。本文还讨论了与时间相关的金兹堡-朗道方程和伊辛自旋的流体动力熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信