{"title":"Active curling of epithelial monolayers dominated by actin cytoskeleton mechanics.","authors":"Huan Wang, Jiu-Tao Hang, Guang-Kui Xu","doi":"10.1103/PhysRevE.110.054410","DOIUrl":null,"url":null,"abstract":"<p><p>Active curling of epithelial tissues, as an indispensable component of developmental morphogenesis, occurs frequently both in vivo and in vitro microenvironments. Deciphering the mechanisms underlying the active curling of epithelial monolayers is crucial for understanding many physiological and pathological processes. Here, a multiscale structure-based cell monolayer model and an active constitutive relation are established to characterize this spontaneous curling of the epithelial tissue. It is shown that the asymmetric distribution of Myosin II along the apicobasal axis generates an active moment that drives spontaneous curling of the suspended epithelial tissue. The time-dependent deflection and rotation angle of the active curling are analytically solved, proving that the curling is driven by the active bending moment directly associated with the apicobasal asymmetric contractile force. Moreover, we demonstrate that the rotation angle is proportional to the apicobasal force ratio and inversely proportional to the thickness of epithelial tissues. In addition, we derive an approximate analytical relation between the out-of-plane curling behavior and in-plane stress, in good agreement with the experimental data and our simulation results. This study provides a pathway to elucidate the mechanical mechanism underlying complex morphological development as well as the physiological and pathological phenomena of epithelial tissues.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054410"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054410","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Active curling of epithelial tissues, as an indispensable component of developmental morphogenesis, occurs frequently both in vivo and in vitro microenvironments. Deciphering the mechanisms underlying the active curling of epithelial monolayers is crucial for understanding many physiological and pathological processes. Here, a multiscale structure-based cell monolayer model and an active constitutive relation are established to characterize this spontaneous curling of the epithelial tissue. It is shown that the asymmetric distribution of Myosin II along the apicobasal axis generates an active moment that drives spontaneous curling of the suspended epithelial tissue. The time-dependent deflection and rotation angle of the active curling are analytically solved, proving that the curling is driven by the active bending moment directly associated with the apicobasal asymmetric contractile force. Moreover, we demonstrate that the rotation angle is proportional to the apicobasal force ratio and inversely proportional to the thickness of epithelial tissues. In addition, we derive an approximate analytical relation between the out-of-plane curling behavior and in-plane stress, in good agreement with the experimental data and our simulation results. This study provides a pathway to elucidate the mechanical mechanism underlying complex morphological development as well as the physiological and pathological phenomena of epithelial tissues.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.