{"title":"Transition-path sampling for run-and-tumble particles.","authors":"Thomas Kiechl, Thomas Franosch, Michele Caraglio","doi":"10.1103/PhysRevE.110.054121","DOIUrl":null,"url":null,"abstract":"<p><p>We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely, the run-and-tumble particles. Notwithstanding the nonequilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by transition-path sampling, can be circumvented by identifying reasonable backward dynamics with a well-defined path-probability density. Our method is then applied to characterize the structure and kinetics of rare transition pathways undergone by run-and-tumble particles having to cross a potential barrier in order to find a target.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054121"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely, the run-and-tumble particles. Notwithstanding the nonequilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by transition-path sampling, can be circumvented by identifying reasonable backward dynamics with a well-defined path-probability density. Our method is then applied to characterize the structure and kinetics of rare transition pathways undergone by run-and-tumble particles having to cross a potential barrier in order to find a target.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.