{"title":"Effects of clustering heterogeneity on the spectral density of sparse networks.","authors":"Tuan Minh Pham, Thomas Peron, Fernando L Metz","doi":"10.1103/PhysRevE.110.054307","DOIUrl":null,"url":null,"abstract":"<p><p>We derive exact equations for the spectral density of sparse networks with an arbitrary distribution of the number of single edges and triangles per node. These equations enable a systematic investigation of the effects of clustering on the spectral properties of the network adjacency matrix. In the case of heterogeneous networks, we demonstrate that the spectral density becomes more symmetric as the fluctuations in the triangle-degree sequence increase. This phenomenon is explained by the small clustering coefficient of networks with a large variance of the triangle-degree distribution. In the homogeneous case of regular clustered networks, we find that both perturbative and nonperturbative approximations fail to predict the spectral density in the high-connectivity limit. This suggests that traditional large-degree approximations may be ineffective in studying the spectral properties of networks with more complex motifs. Our theoretical results are fully confirmed by numerical diagonalizations of finite adjacency matrices.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054307"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054307","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We derive exact equations for the spectral density of sparse networks with an arbitrary distribution of the number of single edges and triangles per node. These equations enable a systematic investigation of the effects of clustering on the spectral properties of the network adjacency matrix. In the case of heterogeneous networks, we demonstrate that the spectral density becomes more symmetric as the fluctuations in the triangle-degree sequence increase. This phenomenon is explained by the small clustering coefficient of networks with a large variance of the triangle-degree distribution. In the homogeneous case of regular clustered networks, we find that both perturbative and nonperturbative approximations fail to predict the spectral density in the high-connectivity limit. This suggests that traditional large-degree approximations may be ineffective in studying the spectral properties of networks with more complex motifs. Our theoretical results are fully confirmed by numerical diagonalizations of finite adjacency matrices.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.