{"title":"Recognition and Localization of Maize Leaf and Stalk Trajectories in RGB Images Based on Point-Line Net.","authors":"Bingwen Liu, Jianye Chang, Dengfeng Hou, Yuchen Pan, Dengao Li, Jue Ruan","doi":"10.34133/plantphenomics.0199","DOIUrl":null,"url":null,"abstract":"<p><p>Plant phenotype detection plays a crucial role in understanding and studying plant biology, agriculture, and ecology. It involves the quantification and analysis of various physical traits and characteristics of plants, such as plant height, leaf shape, angle, number, and growth trajectory. By accurately detecting and measuring these phenotypic traits, researchers can gain insights into plant growth, development, stress tolerance, and the influence of environmental factors, which has important implications for crop breeding. Among these phenotypic characteristics, the number of leaves and growth trajectory of the plant are most accessible. Nonetheless, obtaining these phenotypes is labor intensive and financially demanding. With the rapid development of computer vision technology and artificial intelligence, using maize field images to fully analyze plant-related information can greatly eliminate repetitive labor and enhance the efficiency of plant breeding. However, it is still difficult to apply deep learning methods in field environments to determine the number and growth trajectory of leaves and stalks due to the complex backgrounds and serious occlusion problems of crops in field environments. To preliminarily explore the application of deep learning technology to the acquisition of the number of leaves and stalks and the tracking of growth trajectories in field agriculture, in this study, we developed a deep learning method called Point-Line Net, which is based on the Mask R-CNN framework, to automatically recognize maize field RGB images and determine the number and growth trajectory of leaves and stalks. The experimental results demonstrate that the object detection accuracy (mAP50) of our Point-Line Net can reach 81.5%. Moreover, to describe the position and growth of leaves and stalks, we introduced a new lightweight \"keypoint\" detection branch that achieved a magnitude of 33.5 using our custom distance verification index. Overall, these findings provide valuable insights for future field plant phenotype detection, particularly for datasets with dot and line annotations.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0199"},"PeriodicalIF":7.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0199","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant phenotype detection plays a crucial role in understanding and studying plant biology, agriculture, and ecology. It involves the quantification and analysis of various physical traits and characteristics of plants, such as plant height, leaf shape, angle, number, and growth trajectory. By accurately detecting and measuring these phenotypic traits, researchers can gain insights into plant growth, development, stress tolerance, and the influence of environmental factors, which has important implications for crop breeding. Among these phenotypic characteristics, the number of leaves and growth trajectory of the plant are most accessible. Nonetheless, obtaining these phenotypes is labor intensive and financially demanding. With the rapid development of computer vision technology and artificial intelligence, using maize field images to fully analyze plant-related information can greatly eliminate repetitive labor and enhance the efficiency of plant breeding. However, it is still difficult to apply deep learning methods in field environments to determine the number and growth trajectory of leaves and stalks due to the complex backgrounds and serious occlusion problems of crops in field environments. To preliminarily explore the application of deep learning technology to the acquisition of the number of leaves and stalks and the tracking of growth trajectories in field agriculture, in this study, we developed a deep learning method called Point-Line Net, which is based on the Mask R-CNN framework, to automatically recognize maize field RGB images and determine the number and growth trajectory of leaves and stalks. The experimental results demonstrate that the object detection accuracy (mAP50) of our Point-Line Net can reach 81.5%. Moreover, to describe the position and growth of leaves and stalks, we introduced a new lightweight "keypoint" detection branch that achieved a magnitude of 33.5 using our custom distance verification index. Overall, these findings provide valuable insights for future field plant phenotype detection, particularly for datasets with dot and line annotations.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.