Enhanced ethylenediamine detection using WO3-BiVO4 nanoflakes heterostructure with exceptional adsorption capabilities: Experimental and theoretical studies.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eun-Bi Kim, M Shaheer Akhtar, Sadia Ameen, Ahmad Umar, Sheikh A Akbar, Sotirios Baskoutas
{"title":"Enhanced ethylenediamine detection using WO3-BiVO4 nanoflakes heterostructure with exceptional adsorption capabilities: Experimental and theoretical studies.","authors":"Eun-Bi Kim, M Shaheer Akhtar, Sadia Ameen, Ahmad Umar, Sheikh A Akbar, Sotirios Baskoutas","doi":"10.1088/1361-6528/ada038","DOIUrl":null,"url":null,"abstract":"<p><p>The present work describes the synthesis of WO3-BiVO4- nanoflakes heterostructure (NFHs) by a single step hydrothermal method. The analysis of crystalline phases and structural behavior deduced the formation of good crystal quality WO3-BiVO4 NFHs. Under microscopic observation, the as-prepared WO3-BiVO4 displayed uniform and conspicuous nanoflakes like structures. The extensive density functional theory (DFT) was studied to examine the electronic and band structures of as-prepared WO3-BiVO4 NFHs in terms of formation energy, charge density, density of state (DOS) and band structures. The synthesized WO3-BiVO4 NFHs was used as sensing electrode towards the detection of ethylenediamine (EDA) chemical that displayed a good sensitivity of ~318.52 mA.mM-1cm-2, excellent dynamic range of 1 μM - 1 mM with detection limit (LOD) of ~94.51 nM and retention coefficient of ~0.9929. WO3-BiVO4 NFHs electrode possessed the good reproducibility, stability, and repeatability towards EDA chemical. To the best of our knowledge, for the first time, the fabricated chemical sensor fabricated with WO3-BiVO4 NFHs electrode could be promising electrode materials to identify dangerous chemicals at very low concentration in environment. Importantly, the fabricated chemical sensor can be effective for environmental monitoring.&#xD;&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada038","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work describes the synthesis of WO3-BiVO4- nanoflakes heterostructure (NFHs) by a single step hydrothermal method. The analysis of crystalline phases and structural behavior deduced the formation of good crystal quality WO3-BiVO4 NFHs. Under microscopic observation, the as-prepared WO3-BiVO4 displayed uniform and conspicuous nanoflakes like structures. The extensive density functional theory (DFT) was studied to examine the electronic and band structures of as-prepared WO3-BiVO4 NFHs in terms of formation energy, charge density, density of state (DOS) and band structures. The synthesized WO3-BiVO4 NFHs was used as sensing electrode towards the detection of ethylenediamine (EDA) chemical that displayed a good sensitivity of ~318.52 mA.mM-1cm-2, excellent dynamic range of 1 μM - 1 mM with detection limit (LOD) of ~94.51 nM and retention coefficient of ~0.9929. WO3-BiVO4 NFHs electrode possessed the good reproducibility, stability, and repeatability towards EDA chemical. To the best of our knowledge, for the first time, the fabricated chemical sensor fabricated with WO3-BiVO4 NFHs electrode could be promising electrode materials to identify dangerous chemicals at very low concentration in environment. Importantly, the fabricated chemical sensor can be effective for environmental monitoring. .

利用具有特殊吸附能力的 WO3-BiVO4 纳米片异质结构增强乙二胺检测:实验和理论研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信